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Abstract

This paper examines the labor market implications of investment in automation over
the life cycle of ICT and robot technologies from 1995 to 2017 in 163 European re-
gions. We first identify major technological breakthroughs during this period for these
automation technologies and identify the phases of acceleration and deceleration in
investment. We then examine how exposure to these automation technologies affects
employment and wages across these different phases of their life cycle. We find that the
negligible long term impact of automation on employment conceals significant short
term positive and negative effects within phases of the technology life cycle. We also
find that the negative impact of ICT investment on employment is driven by the phase
of the cycle when investment decelerates (and the technology is more mature). The
phases of the technology life cycles are more relevant than differences in regions’ struc-
tural characteristics, such as productivity and sector specialization in explaining the
impact of automation on regional employment.
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1 Introduction
The increased codification of tasks introduces the potential for the displacement of workers
responsible for performing these tasks by automation technologies (Simon 1960). In turn,
the demand for jobs to perform these tasks diminishes (Autor et al. 2003). However, the
literature suggests that over the long term, short-term changes in demand for labor due
to task codification are likely to be offset by enhanced productivity and economic growth
(Aghion et al. 2022), increased demand for final goods (Vivarelli 1995), and the creation of
new tasks (Autor et al. 2022). An underexplored question is to what extent different vintages
of automation technologies, each codifying more tasks, have affected labor markets in the
short term, and whether their impact differs for different phases of adoption of each vintage,
as firms and workers adapt to the new vintages.

In this paper, we explore how short-term impacts on European regional labor markets
differ across the technology life cycles of four technologies: robots, information technologies
(IT), communication technologies (CT), and software and databases (SDB). We first identify
the main breakthrough technologies within these four groups and delineate their respective
life cycles. We then estimate the impact of exposure to each phase of these technology life
cycles on regional labor markets. This involves distinguishing between the initial period of
accelerated adoption and the subsequent period of decelerated adoption, which precedes the
next technological breakthrough.

Technological advancements typically evolve through incremental changes interspersed
with breakthrough innovations which lead to the emergence of technology life cycles (Tush-
man and Anderson 1986). These cycles begin with rapid developments in various configura-
tions and applications and culminate in the establishment of a dominant design (Abernathy
and Utterback 1978). Standardization of the technology is followed first by a period of in-
cremental changes and growing adoption, and then by a decline in both innovative activity
and adoption rates which herald the next breakthrough innovation and subsequent life cy-
cle. The pattern of diffusion of the breakthrough technology repeats this cycle: following
establishment of the dominant design adoption grows exponentially then slows as diffusion of
the technology reaches and overtakes the midpoint of potential adopter saturation (Geroski
2000).

Codification of the tasks and the skills required to work with the new technologies also
change over the technology life cycle (Langlois 2003, Vona and Consoli 2015) which has at
least two implications for research into the short-term impacts of automation on labor mar-
kets. First, the impacts may vary across different breakthrough technologies (Prytkova et al.
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2024).1 For instance, mechanical automation, robotic automation, and intelligent robotics
perform different tasks with varying abilities and connectivity within the organization, and
have different implications for employment within and outside manufacturing firms (Zuboff
1988).

Second, the direction and intensity of labor market impacts may vary over the technology
life cycle. At least two opposing scenarios can be envisioned. In the first scenario, during
the initial phase of the technology life cycle, firms hoard workers (Domini et al. 2021). This
may be because in the early stages of development and adoption of the technology, the
routinization of tasks is imperfect and requires adjustments. In this situation, technicians
are important(Lewis 2020) and since the retraining of existing workers is costly and time-
consuming (David 1985), firms reconfigure their production organization (Ciarli et al. 2021,
Battisti et al. 2023) including the division of labor (Langlois 2003). In the final stages of
the life cycle, the technology is mature and is more standardized, and firms have learned
to integrate it efficiently into the production process and to perform many of the tasks
previously carried out by workers.2 In the second scenario, early adopters (which tend to be
the most productive and technologically advanced firms, most capable of rapidly integrating
new technologies) may replace workers. In turn, adoption of the technology by early adopters
may lead to production expansion, potentially increasing demand for workers during the
more mature stages of the technology life cycle (Vivarelli 1995). Ultimately, the scenario that
prevails is likely to depend on the specific existing technologies and breakthrough technology
involved.

In this paper, we study the impacts on regional labor markets of different groups of
technologies and their life cycle phases. We empirically examine which effect prevails in
a sample of 163 NUTS-2 regions from 12 European countries during the period 1995 to
2017. Because data on firm adoption across EU regions are not available, to proxy for the
adoption life cycle at the regional level we use information on aggregate investment in each
of the four groups of technologies. To implement our empirical analysis, we integrate data
from multiple sources. We use EU-KLEMS to measure investment in IT and CT, and SDB
(Release 2021), International Federation of Robotics (IFR) data to measure investment in
robots, and ARDECO to assess labor market outcomes (Release 2021).

In the first stage of our two-stage analysis, we identify technology life cycles from 1995 to
1Tushman and Anderson (1986) and successive work suggests that technological breakthroughs can be

competence-enhancing or destroying depending on which firms introduce the innovation. This affects the
knowledge and skills that are replaced, reconfiguring the demand for jobs.

2For instance, Vona and Consoli (2015) note: “the degree of substitutability between workers and ma-
chines increases with incremental technological developments so long as the division of labor facilitates the
standardization of a higher fraction of tasks.’’

2



2017, based on the history of major technological developments and variations in EU invest-
ment in robots, CT, IT, and SDB. We identify major technological breakthroughs during
this period based on fluctuations in technology investments. Notably, we identify three con-
current life cycles for CT, IT, and SDB, reflecting the main information and communication
technology (ICT) digital eras since the 1990s: World Wide Web (WWW) 1.0 (1990–2004),
Graphical User Interface and Cloud Computing (2004–2012), and Big Data and Artificial
Intelligence (AI) (2013–).

Our analysis also identifies a single extended technology life cycle in the case of robots
spanning 1995 to 2012 and aligned with advancements in industrial robots in terms of en-
hanced articulation and mobility capabilities enabled by sensors. Starting in 2013, a second
robot technology cycle has emerged, coinciding with the breakthroughs in big data and AI
which have also impacted the ICT and SDB technology cycles.

In the second step of our analysis, we assess the impact of these automation technolo-
gies on various regional labor market outcomes during distinct technology life cycle phases.
Specifically, we estimate the influence of regional exposure to these technologies on employ-
ment, employment-to-population ratio, and average wage.

To determine the effects of regional exposure to each technology, we adopt a shift-share
instrumental variables (IV) approach which has been used in several previous studies (Chi-
acchio et al. 2018, Aghion et al. 2019, Acemoglu and Restrepo 2020, Dauth et al. 2021).
This approach is tailored to our identified technology life cycles. We use investment in
these technologies in the US as an instrument to address potential endogeneity in European
exposure.

Categorizing regions based on their productive structures and productivity levels in 1980
(i.e. before our period of analysis) allows us to investigate whether the impacts of these
technologies vary with regional characteristics. Our investigation spans the life cycle phases
identified in the first stpe for robots, CT, IT, and SDB.

The analysis yields four main results. First, we observe that while the long-term impacts
of automation technologies on regional employment-to-population ratios are negligible, they
mask significant short-term effects. Specifically, the short-term negative impacts of ICT and
SDB on regional employment-to-population ratios within their technology cycles dissipate
over the long run. In the case of robots, the alternating positive and negative short-term
effects across different phases of the robot technology life cycle are almost balanced but show
a small long-term positive effect. This result is in line with the literature which provides
mixed results for European regions and confirms that over the long term, automation does
not universally displace human labor (Autor 2015). However, it underscores the importance
of short-term impacts such as the average reduction in the employment-to-population ratio
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of 1-2 percentage points annually during the various phases of ICT investment.
Second, we show that different technological breakthroughs within the same technology

group have different impacts on the employment-to-population ratio. This suggests that es-
timates of the impact of robots and ICT during periods that experience several technological
innovations, may be the result of different, potentially contrasting impacts.

Third, our findings suggest that the nature of the impact on labor markets may be
contingent on the specific technology life cycle phase. For instance, the negative impact
on the employment-to-population ratio of exposure to ICT and SDB during the phases in
the graphical user interface cloud computing life cycles is observed predominantly in the
second more mature phase of these technologies. In this phase firms typically invest in more
mature technology vintages. These results imply that in the case of ICT, firms required
time to integrate the technologies effectively into their operations, before leading to task
routinization and worker substitution. Additionally, the pronounced negative effect in this
mature phase might be attributable to firms’ adoption of more standardized technologies
and employment of high-skilled workers replacing those performing routinized tasks.

In the case of robots, there is no evidence of a similar pattern. In contrast to ICT
and SDB, during the third phase of the first cycle for robots which is characterized by
technology maturity, lower prices, and slowdown in investment rates, regional employment
and the employment-to-population ratio increase, which would suggest that regions with
higher adoption experience increased sales.3

Fourth, we find that the impact of automation on employment is influenced more by the
technology life cycle phase than by regional structural differences such as sector specialization
and productivity. While the magnitude of the impact of automation varies across regions
with different levels of productivity and labor specialization, the direction of the impact is
consistent across these regions. This finding underscores the dominant role of the technology
life cycle phase in shaping the labor market effects of automation and shows that it transcends
regional structural variations.

This paper contributes to a large literature on the impact of automation technologies on
labor markets (Goos et al. 2014, Chiacchio et al. 2018, Graetz and Michaels 2018, Aghion
et al. 2019, Acemoglu and Restrepo 2020, Gregory et al. 2022). These studies focus predom-
inantly on the long-term consequences of technology at various levels of analysis. Research
on the US generally indicates a negative impact of robots on employment (Acemoglu and
Restrepo 2020) while in the European case the findings are more mixed. For example, Ace-
moglu et al. (2020) report negative employment impacts from investment in robots, (Dauth
et al. 2021) find no significant effects, and (Reljic et al. 2023) observe a positive impact.

3To clarify, we do not distinguish firm adoption but rely on instrumented estimates of regional investment.
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Additionally, studies which differentiate among robots, CT, IT, and SDB report a range of
effects that vary based on the specific technology and the industry involved (Blanas 2023;
Jestl 2024). Finally, research focusing on different time periods reveals varying impacts,
contingent on whether substitution or compensation effects dominate. For example, Antón
et al. (2022) note that the slight negative effect of robots on employment during 1995–2005
shifts to a positive effect in the period 2005 to 2015.

Our work makes two main contributions to this literature. First, we propose a novel
technology life cycle perspective on the analysis of labor market adjustments in response
to automation. Much previous research differentiates the short-term effects of automation
technologies based on arbitrary time periods which encompass several technological break-
throughs. We explore the shorter-term dynamics defined by the specific life cycle in each of
the four groups of automation technologies: robots, CT, IT, and SDB. This lens allows for
a more nuanced understanding of how labor markets adjust to technological advancements
within distinct phases of technology development.

Second, we contribute to the literature by investigating how the impacts of automation
technologies on labor markets vary among regions with different initial levels of productivity
and industry specializations. Although Foster-McGregor et al. (2021) highlight the influence
of a country’s sectoral structure on its exposure to automation, our findings suggest that the
impact on the labor market differs more significantly between technological breakthroughs
than between regional characteristics. This highlights the importance of the technology life
cycle for shaping labor market outcomes, underscoring the need to consider the specific
stages of technology development when assessing the effects of automation.

The paper is structured as follows. Section 2 presents a detailed description of the main
variables and the databases used for our analysis. Section 3 identifies the technology life
cycle and outlines the primary innovation breakthroughs for robots, ICT, and SDB. Section
4 describes the empirical methodology and our IV strategy. Section 5 presents the results for
the effects of automation technologies in their respective technology life cycles, and discusses
the principal regularities identified. Section 6 provides concluding remarks.

2 Data

2.1 Sample

We analyze the impact of technology exposure on labor market outcomes across 163 NUTS-2
regions from 12 European countries over the period 1995 to 2017. The 12 countries included
are Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Nether-
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lands, Spain, and Sweden.4

2.2 Data sources and variables

Labor market. We examine labor market outcomes at the regional level, focusing on
variables related to employment and wages, constructed using NUTS-2 level data from the
ARDECO database.

For employment, we consider both level of employment defined as the total number of
employed individuals aged between 15 and 64, and the employment-to-population ratio which
is the proportion of employed people aged 15 to 64 relative to the total population.

For wages, we focus on average annual wage per worker, expressed in thousands of euros
(2015 values), computed by dividing total compensation by level of employment.

Exposure to automation technologies. We consider four automation technologies:

1. Robot: “programmed actuated mechanism with a degree of autonomy to perform
locomotion, manipulation or positioning” (ISO 8373:2021);

2. Communication Technology: “specific tools, systems, computer programs, etc., used
to transfer information among project stakeholders” (ISO 24765:2017);

3. Information Technology: “resources required to acquire, process, store and disseminate
information” (ISO 24765:2017);

4a. Computer Software: “computer programs, procedures and possibly associated docu-
mentation and data pertaining to the operation of a computer system” (ISO 24765:2017);

4b. Database: “collection of interrelated data stored together in one or more computerized
files” (ISO 24765:2017).

Based on the available data, we consider computer software (4a) and database (4b) as a
single technology.

We employ the number of robots (i.e. robot stock) in use in each sector at the country
level using the 2019 Release of the IFR data (for a comprehensive review see Jurkat et al.
(2022). Robots are present in three out of six sectors: Industry (B-E), Construction (F),

4We opted to exclude Eastern European countries for two methodological reasons: first, data on initial
sectoral employment shares in 1980 required by our shift-share design to measure the technology exposure
of European regions are not available for some of these countries, and second, identification of automation
technology investment cycles requires a balanced panel of technology stocks for the period 1995–2017. Our
objective is to assess the impact of exposure to automation technologies across the entire set of countries
and an unbalanced panel would bias identification of these cycles towards the subset of countries with data
available up to 1995.
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and Non-Market Services (O-U).5 Since approximately 30% of robots are unspecified (i.e.
not assigned to a particular sector), we distributed them proportionally across sectors based
on sectoral share.6 Additionally, for some countries (such as the US) where numbers of
robots are not available at the sectoral level for certain years, we estimate their number by
distributing the total number of robots weighted by the average sectoral share using years
with available data.7

ICT and SDB data are from the EU-KLEMS database (Release 2021). We capitalize
on the fact that this database distinguishes between these technologies which allows us to
analyze the stock of communication equipment (i.e. CT), computing equipment (i.e.IT), and
computer software and database (i.e. SDB) at the country-industry level. Our measures for
these technology stocks are capital stock (in 2015 volumes), derived from national accounts.89

We converted EUKLEMS figures for non-EU national currencies using the nominal exchange
rate from EUROSTAT.10

Control variables. To account for other factors that might influence regional labor mar-
ket outcomes, we include two control variables (both in shift-share) to isolate the role of
investment in automation. First, we adjust for changes in final domestic demand using the
real consumption index from the Inter-Country Input-Output database.11 Second, we con-
sider the potential impact of trade and international competition by controlling for imports

5It is worth noting that IFR Release 2019 has information at ISIC rev. 3.1. As the rest of our data
sources are at ISIC Rev. 4 (which corresponds to NACE Rev. 2), we harmonized them to be compatible
with the latter classification. Given that we work at 1-digit level industry level and even further aggregations,
constrained by the ARDECO database, this does not imply major distortions. Tables A.1 and A.2 provide
more details on the harmonization.

6Specifically, we calculated the ratio of the number of robots in each sector to the total number of
robots assigned to sectors and allocated the unspecified robots based on these ratios. While some studies do
not distribute unallocated robots across sectors (see Graetz and Michaels 2018, Dauth et al. 2021), in our
case, doing so ensures a harmonized series that is comparable when aggregating our measure of technology
exposure across sectors.

7For instance, suppose that for a specific country, sectoral robot stock data are missing for 1995 to 2000.
We then calculated average sectoral shares from 2001 to 2017 and imputed numbers for the earlier years by
applying these estimated shares to the total robot count.

8Investment would have been a better measure due to small differences in accounting for depreciation
across national statistical offices. However, in the case of the IFR data on robots due to the different
compliance rules described in Jurkat et al. (2022) robot flows (robot installations per year) are tracked
inconsistently across countries. Since inconsistent data on stocks from EUKLEMS is less problematic, we
chose to use stocks.

9For Ireland, technology stock data are available at the country but not the sectoral level. For this
country, we estimated them by allocating country-level technology stocks to the respective sectors in Ireland
based on sectoral share in Ireland’s gross fixed capital formation.

10This applies to Denmark, Sweden, and the U.S. (the last is used as an instrument).
11OECD (2021), OECD Inter-Country Input-Output Database, http://oe.cd/icio. Release: November

2019.
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from China recorded in the OECD Trade in Value Added database.12 Increased trade with
emerging countries has been shown to have adverse effects on manufacturing employment
(Autor et al. 2013, Dauth et al. 2014, Autor et al. 2015).

Instrumental variable. To address the endogeneity in the relationship between the de-
cision to invest in automation technologies and labor market outcomes, we use data on
investment in the U.S. in similar automation technologies as an instrument for investment
by European regions. These data are from the IFR (for robots) and EU-KLEMS (for ICT,
and SDB).13 To construct our instrument (described in section 4), we normalize the tech-
nology stock using sectoral employment data from 1980, sourced from the OECD Annual
Labour Force Statistics (ALFS).14

3 Technological Breakthroughs and their Life Cycles
Similar to innovations in other technologies, automation innovations tend to cluster tempo-
rally around major breakthroughs (Silverberg and Verspagen 2003) which promote series of
incremental innovations leading to the next major advancement.

In this section, we qualitatively identify the primary innovation breakthroughs for robots,
CT, IT, and SDB since 1990 by combining insights from the innovation and engineering lit-
erature. We next analyze the diffusion of these breakthroughs across Europe over time,
examining investment trends in robots, CT, IT, and SDB. For each technology group, we
differentiate between periods of accelerated investment (early adoption of the new technol-
ogy) and slower investment (late adoption of the mature technology) before and after each
breakthrough.

3.1 ICT Breakthroughs: From the Web 1.0 to Big Data and AI

The ICT revolution which began in the early 1970s has been described as “a set of interre-
lated radical breakthroughs, forming a major constellation of interdependent technologies”
(Freeman and Perez 1988, Perez 2010). Nuvolari (2020), identifies four major interdepen-
dent technological ICT elements: electronic components, computational power (semiconduc-
tors and computers), software, and networking equipment. Radical advancements in these
components can lead to significant innovations in ICTs. In particular, the development of

12OECD (2021), OECD Trade in Value Added Database, http://oe.cd/tiva. Release: November 2021.
13Sectoral robot data for the U.S. are available from 2004. We impute earlier data using the methodology

explained earlier in this section.
14OECD (2022), OECD ALFS, https://stats.oecd.org/.
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Figure 1: Main digital technology innovations since 1990

Notes: Figure 1 presents the main digital technology innovations since 1990. The 3 digital technological cycles are Web 1.0
(1990 to 2004), graphical user interface and Web 2.0 (2005 to 2012), and big data and AI (from 2013).

microprocessors was central to the ICT revolution, enhancing the computational capacity
of electronic devices such as computers while also reducing their cost (Freeman and Louçã
2001).

Figure 1 presents the main digital technology innovations since the 1990s and highlights
three major radical shifts in various ICT components (breakthroughs): Web 1.0 (1993–2004),
Graphical User Interfaces and Cloud Computing (GUI) (2006–2012), and Big Data (2013–).
We highlight the main features of these three breakthroughs here and provide a more detailed
description of the technologies and their components in Appendix E.

Web 1.0 (1990–). During the 1990s, the reduced size and cost of microprocessors sig-
nificantly increased adoption of personal computers and the introduction of user-friendly
operating systems such as Windows 3.0 and Linux led to the widespread adoption of com-
puters (IT). Alongside these technical changes, the emergence in 1993 of the World Wide
Web (WWW) facilitated adoption of the Internet (CT) by businesses (e.g. e-commerce)
and end-users. While software development played a crucial role in disseminating ICT to
end-users in the 1990s notably through Windows 3.0, investment in databases was limited.

Graphical User Interface and Cloud Computing (2004–). The second technologi-
cal breakthrough was marked by the emergence of Web 2.0 technologies in the early 2000s
following significant advancements in GUI and Cloud Computing. Previous digital infras-
tructure developments (i.e. the Internet and mobile communication) spurred the creation
of user-friendly devices such as smartphones. This era gave birth to significant network
economies (Mansell 2021) and the proliferation of new service applications (e.g. social me-
dia, electronic commerce, search engines, data analytics). During this period, also databases
became increasingly central to both final and intermediate demand, as computational power

9



grew and Application Programming Interfaces (APIs) were developed.

Big Data and Artificial Intelligence (2013–). The third technological breakthrough
is characterized by the latest wave of AI which has been driven by increased investments in
neural networks and deep learning. This period is characterized by advancements related to
machine learning and deep learning algorithms enabled by the growing availability of large
data sets or big data, coupled with rapid increases in computational power (facilitated by
cloud computing). Significant enhancements to networking and communication technologies
have enabled diffusion of the Internet of Things (IoT).15

3.2 Robot Breakthroughs: From Industrial Robots to Robotics

Advancements in ICTs, and SDB laid the foundations for the advances in industrial robots.

Industrial Robots (1990–). The development of robotics in the 1990s built on the three
main technologies integral to the third generation of robots (1978–1999) identified by Gas-
paretto et al. 2019. These technologies include remote and self-programming capabilities
enabled by microprocessors, sensors, and rudimentary ‘intelligence’ for diverse condition re-
sponses and environmental interactions (e.g. visual or tactile inspection and servo controls),
and the capability for six-axis movements (see discussion in Savona et al. 2022). Advances
during the 1990s in communication protocols including the Internet, the WWW, and wire-
less technologies further expanded control capabilities and spatial movements, leading to the
emergence of mobile robots (Grau et al. 2017).

Robotics (2010–). Technologies integral to the evolution of ICT, and SDB enabled a
significant shift in robotics. Development of AI technologies in parallel with the emergence
of the IoT and sophisticated sensors paved the way to intelligent computing systems. More
sophisticated sensors and wireless communication technologies allow complete mobility on
manufacturing floors and self-coordination involving swarms of devices (IoT). These radical
developments have increased the autonomy of robots, the ability of robots to collaborate
with humans, and their precision in various industrial applications (Müller 2022).

In summary, during the period analyzed (1995–2017), we can identify three primary
developments (breakthroughs) in ICTs and two main advancements in robotics. In the

15The IoT can be defined as a suite of technologies which allows physical objects (equipped with sensors)
to communicate and exchange data with computing systems via wired or wireless networks without human
intervention (Lee 2017). Alongside social media platforms, the IoT is promoting data generation and further
AI developments.
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former case we identify the emergence of Web 1.0 technologies and software alongside cheaper
computing costs and rapid advances in user-friendly software (1990–onwards); the emergence
of Web 2.0, GUI, simplified data acquisition technologies (e.g. APIs), cloud computing and
storage (2005–onwards); and the AI and connectivity (IoT) revolutions (2013–onwards). In
the case of industrial robots, we identified enhancements in flexibility, control, and sensing
capabilities with the third generation of robots (1990–on), and the introduction of the fourth
generation of intelligent robots which built on the developments in AI (2010–on).

3.3 Technology life cycles in ICT and Robots

We next examine investment in robots, CT, IT, and SDB since 1990. The aim is to determine
whether the investment pace changes throughout each breakthrough’s life cycle—typically
accelerating adoption following a breakthrough and decelerating before the next one.

Since our interest is in the life cycles of these technologies and since we lack detailed
information on the adoption of specific technologies within each category (robot, IT, CT
and SDB), we look at investment patterns aggregated at the European level. For each
category of automation technologies, we aggregate investment stock (per 1,000 workers in
1980 at constant prices) across all European countries.16

As expected, investment in the four automation technology categories increased annually
since 1990 (see Appendix B Figure D.9). To assess the rate of increase, we calculate the first
difference in the time series (after applying a 3-year moving average to smooth short-term
fluctuations). Figure 2 depicts the changes in investment in robots (2a), CT (2b), IT (2c),
and SDB (2d).

The patterns of investment in ICT and SDB—in the period 1995 to 2017 show three
phases of acceleration and deceleration with remarkably similar timing for the three groups
of technologies. The Web 1.0 breakthrough in the early 1990s was followed by an investment
acceleration phase which persisted to around 2001 and was succeeded by a declining rate
of change up to around 2004/5. This period coincided with the emergence of the second
breakthrough in our timeframe: GUI and cloud computing after which investment again
accelerated up to 2008 to 2011 depending on the technology group and then declining before
the next breakthrough (big data and AI) in 2014. The third technology cycle began in 2014
with all three technologies experiencing ongoing increases in investment up to 2017.

16The technology stocks are calculated in volume terms and are not directly additive. Therefore, we
used the EU-KLEMS methodology to generate aggregates (EUKLEMS&INTANProd 2021). We calculated
aggregation at the European level at both the current and previous year’s prices and derived a (European
level) volume index which we used to chain-link the values using 2015 as the base year. We then normalized
the series by employment aggregated at the European level in 1980.
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Figure 2: Evolution of technology investment in first difference (3-year moving average)

(a) Robots (b) Communication technologies

(c) Information technologies (d) Software and database

Notes: Figure 2 depicts the evolution of the first difference in each technology (robots, CT, IT, and SDB) per 1000 workers at
the EU level (based on aggregate data for the 12 European countries in the sample). The series were smoothed by taking the
3-year moving average.

Table 1: Phases of the technology life cycles

Cycle Phase CT IT SDB Robots
Web 1.0 ↑ 1995-2001 1995-2001 1995-2000

↓ 2001-2005 2001-2004 2000-2005
GUI & Cloud Computing ↑ 2005-2011 2004-2008 2005-2008

↓ 2011-2014 2008-2014 2008-2014
Big Data - AI ↑ 2014-2017 2014-2017 2014-2017
Industrial Robots ↑ 1995-2002

→ 2002-2006
↓ 2006-2013

Robotics ↑ 2013-2017
Notes: Table 1 summarizes the years of each phase in the technology life cycles of CT, IT, SDB, and robots
based on Figure 2. An ↑ indicates the first phase of rapid diffusion of early vintages of the technology;
an ↓ indicates the last phase of slower diffusion of later vintages of the technology; an → indicates stable
investment/adoption rates.
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Investment in robots shows a distinct trajectory with an acceleration in the first cycle
up to 2001, followed by shorter cycles up to 2007 which suggest a prolonged phase of high
but diminishing rates of adoption. This period of relatively stable investment growth then
transitions into a deceleration phase, lasting until the robotics breakthrough involving big
data and AI. This second robot technology lifecycle spanned 2013 to 2017. Table 1 summa-
rizes the technology life cycle phases we used to determine the sub-period for estimating the
impact of investment in the four groups of technologies on regional labor markets.

The investment patterns in robots, ICT, and SDB in Europe—which diverge from the cy-
cles in aggregate consumption (see Figure D.8),17 qualitatively indicate a technology lifecycle
characterized by increasing rates of adoption following each breakthrough in the various com-
ponents of these technologies, and decreasing rates prior to the next breakthrough. While
data on the adoption of specific technologies across countries are unavailable, these trends
and the discussions in Sections 3.1 and 3.2, imply the presence of distinct phases in the
evolution and use of ICT and robots with potentially varying impacts on the labor market.

4 Empirical Specification
Having delineated the technological breakthroughs in ICT and robotics, as well as their
respective lifecycles, we next evaluate the impact on regional labor markets in Europe of
investment in IT, CT, SDB, and robots. We consider the lifecycle of each technology as an
inherent characteristic and thus assume that each region is exposed to every phase in the
technology lifecycle. The availability of country level data on ICT and robotics investments
allow us to calculate technology exposure (i.e. change in the technology stock) as a shift-
share instrument across different phases of the different technological cycles. We estimate our
baseline model for labor market adjustments in response to technology exposure throughout
these lifecycle phases. Finally, to address identification issues we implement an IV strategy
which uses U.S. technology investment as an instrument for European technology investment.

17This was also validated by regressing the investment time series for each technology group against a
linear time trend and real consumption per 1,000 workers in 1980 aggregated at the European level. The
results are depicted in Appendix D Figure D.9. The second panel shows the residuals after regressing the
time series on a linear time trend, and the third panel presents the residuals after including both the time
trend and real consumption.
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4.1 Shift-share technology exposure in technological investment
phases

First, we measure exposure of a European region 𝑟 to technology 𝐾 between years 𝑡 and 𝑡+ℎ
using the standard shift-share measure in the literature (Chiacchio et al. 2018, Acemoglu
and Restrepo 2020, Dauth et al. 2021). Formally,

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝐸𝑈
𝑟 )𝑡+ℎ

𝑡 = ∑
𝑖∈𝐼

𝐿𝐸𝑈
𝑟𝑖

𝐿𝐸𝑈𝑟
(

𝑇 𝑒𝑐ℎ𝐾,𝐸𝑈
𝑖,𝑡+ℎ

𝐿𝐸𝑈
𝑖

− 𝑇 𝑒𝑐ℎ𝐾,𝐸𝑈
𝑖,𝑡

𝐿𝐸𝑈
𝑖

) , (1)

where 𝐿𝑟𝑖 is the level of employment in sector 𝑖 in region 𝑟 in 1980, 𝐿𝑟 is the level of
employment in the region in 1980, 𝑇 𝑒𝑐ℎ𝐾,𝐸𝑈

𝑖,𝑡 /𝐿𝐸𝑈
𝑖 is the level of technology stock 𝐾 ∈

{𝑅𝑂𝐵, 𝐼𝑇 , 𝐶𝑇 , 𝑆𝐷𝐵} in year 𝑡 per thousand workers in 1980 in sector 𝑖 at the country
level.18

We adjusted our shift-share design to account for the fact that we segment the period
from 1995 to 2017 into sub-periods representing the different phases of the technology life
cycles.

Consider the year 𝑡 + ℎ′ as a breakpoint (i.e. any intermediate year between 1995 and
2017) delineating two phases. We can divide the exposure defined in Equation (1), into the
phase before the breakpoint and the phase after the breakpoint, such that

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )2017

1995 = ∑
𝑖∈𝐼

𝐿𝑟𝑖
𝐿𝑟

(𝑇 𝑒𝑐ℎ𝐾
𝑖,2017

𝐿𝑖
−

𝑇 𝑒𝑐ℎ𝐾
𝑖,𝑡+ℎ′

𝐿𝑖
+

𝑇 𝑒𝑐ℎ𝐾
𝑖,𝑡+ℎ′

𝐿𝑖
− 𝑇 𝑒𝑐ℎ𝐾

𝑖,1995
𝐿𝑖

) .

By regrouping the terms and using the exposure definition derived from Equation (1),
total exposure can be expressed as the sum of the exposures in both phases:

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )2017

1995 = ∑
𝑖∈𝐼

𝐿𝑟𝑖
𝐿𝑟

(
𝑇 𝑒𝑐ℎ𝐾

𝑖,2017
𝐿𝑖

−
𝑇 𝑒𝑐ℎ𝐾

𝑖,𝑡+ℎ′

𝐿𝑖
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾

𝑟,2

+ ∑
𝑖∈𝐼

𝐿𝑟𝑖
𝐿𝑟

(
𝑇 𝑒𝑐ℎ𝐾

𝑖,𝑡+ℎ′

𝐿𝑖
− 𝑇 𝑒𝑐ℎ𝐾

𝑖,1995
𝐿𝑖

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,1

,

where 1 refers to the technology investment phase between 1995 and 𝑡 + ℎ′ and 2 to
the technology investment phase between 𝑡 + ℎ′ and 2017. This split in exposure can be
generalized to any number of phases as follows:

18Consequently, our change in exposure is confined to changes in the technology stock. The weights (i.e.
sectoral share of employment in the region) remain constant and to avoid endogeneity issues we take 1980
values.
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(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )2017

1995 = ∑
𝜏∈𝜏

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,𝜏 . (2)

Similarly, we consider labor market adjustments over the different phases of technological
investment. This division is straightforward:

(𝑦𝑟)2017
1995 = ∑

𝜏∈𝒯
𝑦𝑟,𝜏 ,

represents the change in the labor market outcome variable for region 𝑟 during the phase 𝜏 .
In the remaining sections of the paper, the time units for analysis are the phases of

investment acceleration and investment deceleration, 𝜏 identified in Section 3.3. Since tech-
nological cycles do not align perfectly, these phases vary depending on the technology. We
denote 𝒯𝐾 as the set of cycle phases for technology 𝐾.

4.2 Baseline specification

To assess the relationship between labor market adjustments and exposure to the technology
𝐾 throughout the various phases 𝜏 ∈ 𝒯𝐾 of each technology life cycle, we use the following
specification:

𝑦𝑟,𝜏 = 𝛼 + 𝛽 × 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,𝜏 + 𝑋′𝛾 + 𝑢𝑟, (3)

where 𝑦𝑟,𝜏 represents the annualized change in the outcome variable for region 𝑟 during
phase 𝜏 , 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾

𝑟,𝜏 is the region’s exposure to technology 𝐾 during the same phase, and
𝑋 includes control variables such as changes in final demand and trade exposure (both
calculated using the shift-share method), and exposure to other technologies; 𝑢 is the error
term.

We standardize technology exposure at phase level to facilitate comparison of effect mag-
nitudes across different technological phases and enhance interpretability of the coefficients.
Thus, the coefficient 𝛽 can be interpreted as the annual change in the outcome variable 𝑦
for a one-standard-deviation (1-STD) change in exposure to technology 𝐾 during the phase
𝜏 of the technology life cycle.

Changes in levels of employment and average wage are both calculated as log-changes, al-
lowing the coefficients to be interpreted as percentage changes. Changes in the employment-
to-population ratio and the wage share are computed directly, meaning that the coefficients
can be interpreted as percentage point changes.
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4.3 Identification and IV strategy

The relationship between investment in automation technology and employment and wage
outcomes is endogenous. The decision to invest in automation technologies is influenced
by the labor cost and availability (Bachmann et al. 2022) including labor market institu-
tional factors (Presidente 2023). Also, some common industry-region level determinants of
automation and labor such as labor institutions are not directly observable. Controlling
for real consumption (as a proxy for demand shocks) and trade exposure partially but not
completely mitigates this issue.

Measuring automation technologies presents several challenges. First, not all robots
included in the IFR data are allocated to specific sectors. Second, tangible and intangible
capital (such as ICT and software) measuring and accounting methods differ across countries
and over time which means that the estimates derived from Equation (3) may be biased.
The direction of this bias depends on the prevailing source of endogeneity.

Following the IV used in Acemoglu and Restrepo (2020) and Antón et al. (2022), we use
technological investment data for the U.S. a large country undergoing significant automa-
tion.19

We construct the exposure of European regions over a period by measuring the change
in automation technologies in the U.S. (shift) over the same period, maintaining the initial
employment shares from European regions (share). The instrument is defined as:

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝑈𝑆
𝑟 )𝑡+ℎ

𝑡 = ∑
𝑖∈𝐼

𝐿𝐸𝑈
𝑟𝑖

𝐿𝐸𝑈𝑟
(

𝑇 𝑒𝑐ℎ𝐾,𝑈𝑆
𝑖,𝑡+ℎ

𝐿𝑈𝑆
𝑖

− 𝑇 𝑒𝑐ℎ𝐾,𝑈𝑆
𝑖,𝑡

𝐿𝑈𝑆
𝑖

) , (4)

where 𝑇 𝑒𝑐ℎ𝐾,𝑈𝑆
𝑖,𝑡 /𝐿𝑈𝑆

𝑖 is the level of technology stock 𝐾 per thousand workers in 1980 in
sector 𝑖 in the US for year 𝑡. The years 𝑡 and 𝑡 + ℎ correspond to the start and end of the
cycle phase, respectively.

By considering changes in technology in the US, we capture exogenous shifts in the
technology that might influence its diffusion in a country similar to Europe. We allocate
investment proportionally according to the exposure of each region in 1980, based on its
sectoral specialization.

We employ the following first-stage specification for each phase 𝜏 :

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝐸𝑈
𝑟,𝜏 = 𝛼 + 𝛽 × 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝑈𝑆

𝑟,𝜏 + 𝜂𝑐 + 𝑢𝑟, (5)
19Some studies use data from other European countries (Aghion et al. 2019, Dauth et al. 2021, Bachmann

et al. 2022). However, compared to employment trends between EU countries and the U.S. employment
trends in EU countries are more closely correlated due in particular to global value chains and human
capital flows.
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where 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝐸𝑈
𝑟,𝜏 is the baseline exposure to technology 𝐾 in the European region 𝑟

for the phase 𝜏 , as defined in Equation (1), 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝑈𝑆
𝑟,𝜏 is the instrument for the phase,

as outlined in Equation (4), and 𝜂𝑐 represents the country fixed effect. This fixed effect
accounts for between-country differences in technology stocks available for each industry at
the national level.

4.4 Regional clusters

To investigate how the effects of automation vary across regions with different characteristics,
we categorize them based on productive structure and technological capabilities.

To measure productive structure, we employ a k-means algorithm using regional employ-
ment shares in 1980 across three broad sectors—agriculture, industry, and services—as clus-
tering variables.20 Our preferred specification identifies three distinct groups: agriculture-
intensive, industry-intensive, and service-intensive.21

To proxy for technological capabilities, we use regional labor productivity in 1980 and
classify regions as high or low productivity based on whether their productivity level is above
or below the median for the entire sample of regions.22 Data are from ARDECO.

To account for cluster type and productivity level, we interacted technology exposure 𝐾
with slope dummies for cluster and productivity level, i.e. we perform separate regressions for
both the cluster and productivity categories which increases the granularity of our analysis.

5 Labor Market Impacts of Different Technology Vin-
tages

In this section, we examine the impacts on the labor market of exposure to each technolog-
ical brakethrough during different phases of their life cycle, for each group of technologies.
Our findings are based on the IV estimates presented in Appendix C, Tables C.2 to C.9.23

20Sectors from NACE Rev. 2 have been grouped as follows: Industry includes major groups B to F and
Services G to U.

21In Appendix D, Figure D.1 shows the geographical distribution of regions from our cluster analysis.
Figure D.2 presents the goodness-of-fit using 3 metrics. We selected 𝑘 = 3 based on the Bayesian Information
Criterion (BIC), which suggests that the optimal number of clusters is between 3 and 5. Appendix B Table
B.1 presents the number of regions in each cluster and their within-cluster averages (centers).

22Labor productivity is calculated as the ratio of Gross Value Added (GVA) at constant prices to employ-
ment (in thousands) in 1980 for each region. For Greece and Ireland where GVA data prior to 1995 are
unavailable, thus we use 1995 data for these calculations. Figure D.3 depicts the distribution of regions by
productivity level relative to the overall sample of regions.

23Tables C.2 to C.5 present the shift-share IV estimation coefficients. Tables C.6 to C.9 present the
regional cluster coefficients, estimated separately to highlight the heterogeneity in the relationship between
the primary variables. Tables C.10 to C.13 present the results of the ordinary least squares regression.
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To investigate whether the cyclical emergence and adoption of breakthroughs in digital au-
tomation technologies had short term impacts on the labor market between 1995 and 2017,
we compare the results for each breakthrough and their corresponding life cycle phases. We
first assess the differences between long- and short-term effects and then investigate patterns
in how digital automation technologies have affected employment and wages in European
regions throughout the technology life cycles that occurred between 1995 and 2017.

5.1 Short-term versus Long-term impacts

Tables C.6 to C.9 show significant short-term positive and negative impacts of all group of
digital automation technologies on the regional employment-to-population ratio for several
phases of the technology life cycles. However, except for robots which exhibit notably smaller
long term effects, the effects do not persist over the long term (Table C.1).24 Over the whole
period 1995-2017, the long-term impacts of ICT and SDB on the employment-to-population
ratio are negligible and statistically insignificant (Table C.1 column 3).

For instance, IT exposure has both positive and negative impacts on the regional employment-
to-population ratio depending on the cycle phase (Table C.4). Negative effects in the second
phase of the first (Web 1.0) and second (GUI and cloud computing) technology life cycles
generally outweigh the positive effects observed in the first phase of each of the two cycles.

Fundamentally, over the long term (1995 to 2017), the predominantly negative short-
term effects of ICT and SDB exposure on the employment-to-population ratio in European
regions are compensated. Various mechanisms potentially mitigate the negative short-term
impacts of automation technology investments over time, such as productivity growth, the
creation of new tasks and jobs, and product innovations.

The pattern for robots differs in two main respects. First, the short-term impacts of
robot exposure are not fully offset in the longer term. Regions investing (1-STD) more in
robots experience a 0.07pp annual increase in the employment-to-population ratio which
totals 1.54pp for the period 1995-2017 (Table C.1). However, this increase is lower than
the sum of the average annualized impacts observed for different robot life cycle phases
(Table C.2). Second, for robots, the positive impacts on the employment-to-population
ratio dominate the negative impacts which contrasts with the result for ICT. Overall, higher
long-term investment in robots results in increased employment, although this general trend
conceals diverse short-term effects.

Our analysis of short-term impacts segmented by technology life cycles sheds light on
the mixed results in previous studies for the impact of robots on regional employment in

24We focus on the employment-to-population ratio to capture the impact of technology investments on
population changes including those due to migration.
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European countries. Taken together, the effect on employment of the first two phases of the
industrial robots life cycle (1995-2002 and 2002-2006) is negative, which is in line with the
findings in Antón et al. (2022) of a negative effect for 1995-2005 but a positive effect in the
period 2005 to 2015. Our results suggest that the differences related to previous findings
may be attributable to the specific technology phases analyzed.

The long-term impact of IT and SDB on average regional wages in the period 1995 to
2017 is minimal and not statistically significant (Table C.1). In contrast to the employment-
to-population ratio, this lack of significance is consistent across most short-term periods with
notable impacts on wages observed only for the Web 1.0 life cycles which are characterized
by widespread adoption of personal computers promoted by user-friendly software (Tables
C.4 and C.5).

The impact of CT on wages differs from the impact of IT and SDB. The positive effect
of CT on average wages is limited to the Web 1.0 life cycle and shows a substantial annual
increase. Regions investing 1-STD more in CT during this period experienced wage increases
of 0.24% and 0.99% which were sustained over the long term (Table C.1).

Also in the case of wages, robots show a unique pattern compared to ICT and SDB. The
long-term impact of robots on wages is both significant and negative (Table C.1). Regions
investing 1-STD more than average in robots experienced an annual wage decrease of about
-0.26% or -5.72% over the entire period. However, this long-term impact is less than the
sum of the short-term impacts observed between 1995 and 2006 which are attributable to
the positive effects noted in the second and more recent technology life cycle (Table C.2).

5.2 Regularities across technology life cycles

The results in Tables C.2 to C.9 highlight four findings related to the influence of the tech-
nology life cycle on the impact of automation on regional labor markets.

First, the impact of exposure to automation technologies on the employment-to-population
ratio varies among different technological breakthroughs within the same group. Within the
same group (e.g. Web 1.0 vs Web 2.0 for IT) the type of technology has a distinct effect.
This suggests that combining several technological breakthroughs in a single estimation could
yield results that amalgamate these diverse and potentially contrasting effects.

Second, focusing on the second technology life cycle (GUI and cloud computing) which
is captured the most accurately by our data,25 we find that the negative short-term impacts
on the employment-to-population ratio are observed predominantly in the later phases. This
life cycle combines enhanced flexible computational capacity (cloud computing) with tech-

25We do not know when the first cycle starts and when the third cycle ends.
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nologies that enable improved coordination and division of labor along the value chain (Web
2.0 and GUI). Our results suggest that in the early phase of rapid technology adoption,
employment levels in firms in exposed regions tend to remain stable (Domini et al. 2021),
leading to an increase in the employment-to-population ratio. However, in the second phase,
when late adopters use more mature technology, investment replaces labor and results in re-
duced demand for labor. Alternatively, the decrease in the employment-to-population ratio
in the second phase may be due to the ability of early adopters to optimize their technology
use and reduce their employees. In both cases, in the short term potential increased sales or
the creation of new tasks do not compensate.

Third, the effects of exposure to robots on regional employment differ from exposure to
ICT and SDB. WHile early adopters of ICT, SDB, and robots experience an increase in the
employment-to-population ratio during the early phase of adoption, in the case of robots,
late adopters also benefit from increased sales of the mature technology which then leads to
employment growth. The negative impact on employment in the case of robots is observed
primarily during the intermediate phase where a labor replacement effect outweighs any
compensatory mechanisms.

The contrasting effects of robots compared to ICT and SDB suggest that firms take
different approaches to the integration of these technologies during the different technology
life cycle phases. This suggests the need for further investigation at the firm-occupation
level. It might be that the integration of ICT and SDB rather than robots in production
processes could lead to more rapid worker replacement effects.

Alternatively, it is possible that these differences might be due to regional compensation
mechanisms. For example, the adoption of robots by a limited number of firms Deng et al.
(2023) might result in market domination to the detriment of non-adopters. This market
shift combined with worker displacement in adopting firms and reduced sales in non-adopting
firms, could lead to an overall negative impact on employment during the second phase.
However, this trend might reverse in the third phase with the inclusion of late adopters who
might benefit from enhanced productivity and output.

Given that ICT, SDB, and robots complement one another (as discussed in Appendix
E), the varied impacts across their different life cycle phases may also suggest some interplay
among these investments, with some technologies replacing or complementing different tasks
(Prytkova et al. 2024). Unraveling the mechanisms behind these differences would require
the analysis of both regional and firm data.

Fourth, regional differences in industry specialization and initial productivity affect the
results driven by the variations in technology life cycles only marginally. The automation
technology vintage and life cycle phase are more relevant than sectoral and productivity
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differences among regions for explaining the effects on employment of exposure to automation
technologies. This argument is based on a comparison among regions with varying initial
levels of sector specialization and labor productivity (measured in 1980) across different
phases.26 Tables C.6-C.9 report the impact of technology investment on employment-to-
population ratio and average wage which we observe is largely consistent across regions with
different initial sector specializations and/or different labor productivity levels (in the case
of robots in particular).27 An exception to this pattern is IT investment, where the most
significant impacts on the employment-to-population ratio are observed in highly productive,
industry-specialized regions (the European manufacturing core).

6 Conclusion
This paper examined the impact of labor market exposure to different vintages of four groups
of digital automation technologies—robots, CT, IT, and SDB—for 163 European regions in
12 European countries. We focused on the short term impacts during each phase of the
corresponding technology life cycle of each vintage during the period 1995 to 2017.

We identified the key technological breakthroughs in each technology group and validated
them empirically by analyzing investment trends in ICT and robots which identified periods
of accelerated and decelerated investment. We examined the effects of these technologies on
labor market outcomes including employment levels, the employment-to-population ratio,
and the average wage across the two main phases of each technological cycle (acceleration
and deceleration). The exposure of regional labor markets to each technology in its respective
phases was quantified using a shift-share approach. We also employed an IV strategy, using
technology investments in the U.S. to proxy for European investment in these four technology
categories.

Our study provides four main results. First, although we observed no effects of ICT and
SDB on the employment-to-population ratio over the long-run, over the short term we found
evidence of significant positive and (predominantly) negative impacts for each technology life
cycle. In practice, this means that although increased demand, spillovers, and emergence of
new tasks may compensate for the substitution effect of ICT in the longer term, workers do
experience reduced demand in the short run, and particularly in the second phases of the
technology life cycles when the technology is more mature. In the case of robots, we found
a long-term positive impact on the employment-to-population ratio mitigated by smaller

26See section 4 for details of the cluster estimation.
27This finding contrasts with the results of Reljic et al. (2023) which includes Eastern European countries

and focuses on a shorter period (2011-2018), combining the last phase of the industrial robots life cycle and
the first phase of the intelligent robotics life cycle.

21



negative impacts in one of the life cycle phases. The short term results help to explain the
heterogeneous results in the literature on the impact of robots on employment in Europe.
The differences found in previous work may be due to the impact of different robot vintages,
which we show have different impacts on the labor market.

Second, consistent with prior research, we found that the impact of exposure to different
automation technologies (such as robots and ICT) on the labor market varies. Our findings
extend this work by showing that the impacts related to different technological breakthrough
differ within the same technology group.

Third, we have shown that the impact of technology exposure varies not only by tech-
nological breakthrough but also by the phase of the technology life cycle. The differences
between phases seem to be consistent across various ICT, particularly when analyzing the
technology life cycle that is the most clearly defined in our data (the second cycle). In par-
ticular, we show that the first phase of accelerating adoption has a negative impact on the
employment-to-population ratio, whereas the second phase of decelerating adoption has a
negative impact.

Finally, our analysis indicates that the phase of the technology life cycle plays a more
significant role than regional structural differences for determining the impact of labor market
exposure to these technologies. This suggests that the timing of technology adoption during
its life cycle is crucial for understanding its effects on the labor market.

The main implication of our study is that policy should not ignore the short-term effects
of automation since these differ among technologies. While the emergence of new jobs tends
to be a long term effect which is accompanied by increased demand due to productivity gains
and the introduction of new goods and services, policy interventions should be implemented
in the short-term to support workers adversely affected by automation. Specifically, policies
should aim to mitigate the short-term negative effects on employment (observed in the case of
ICT) and wages (particularly in the case of exposure to robots). Additionally, it is crucial to
address the long-term negative consequences on average wages and the potential for increased
inequality resulting from robot exposure. Labor market institutions could play an important
role in alleviating wage inequality.

Our study has some limitations which suggest directions for future research. The main
limitation is lack of data on adoption of specific technologies across countries and regions.
While we consider country-specific differences in exposure to technology, our approach as-
sumes uniform adoption of the same technology vintage across all European regions. Also,
our analysis does not differentiate between early and late adopting firms within a region.

These limitations underscore the need for more comprehensive comparative studies of
countries and regions, using comparable firm-level and employee data. Additionally, consid-
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ering the varying impacts of these technologies on different worker types, our investigation
could be supported by a task-based approach which would provide insights into whether
different technology life cycles have significant effects on workforce composition.
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Appendices

A Data

This appendix presents further details on the data as well as summary statistics. We provide
additional tables and figures about the classification of sectors used in the analysis and the
stocks and prices of technologies.

A.1 Sector aggregation

We consider six sectors as the result of the aggregation and compatibilization between NACE
Rev. 1.1 and Rev. 2. This section relies on the methodology adopted in Petit et al. (2022).
Agriculture (A) corresponds to activities that relate to agriculture, forestry, and fishing.
Industry (B-E) refers to manufacturing, mining and quarrying, utilities; except Construction
(F) which is a sector in itself. Market Services (G-J) encompass service activities such as
wholesale and retail trade, accommodation and food service activities, transportation and
storage, along with information and communication. Financial & Business Services (K-N)
correspond to financial and insurance activities; real estate activities; professional, scientific,
technical, administration and support service activities. Lastly, Non-Market Services (O-
U) regroup all other services such as public administration and defense, education, human
health and social work activities; and any other service activities.

Table A.1 summarizes the aggregation of sectors by providing the corresponding sec-
tions in both revisions of the NACE classification. Table A.2 presents the overview of both
revisions of the NACE classification and the correspondence.

Table A.1: Sectors of economic activities and NACE sections

Sector NACE Rev. 2 NACE Rev. 1.1
A Agriculture A A, B
B-E Industry B, C, D, E C, D, E
F Construction F F
G-J Market Services G, I, H, J G, H, I
K-N Financial Business Services K, L, M, N J, K
O-U Non-Market Services O, P, Q, R, S, T, U L, M, N, O, P, Q

Notes: This table presents the classification of 1-digit NACE industries into sectors used in
the analysis. The classification is derived from the NACE classifications to be compatible
across the two versions Rev. 1.1 and Rev. 2. Table A.2 summarizes both NACE classifica-
tions in the appendix.
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Table A.2: Overview of NACE classifications

NACE Rev. 2 NACE Rev. 1.1
A Agriculture, forestry and fishing A Agriculture, hunting and forestry

B Fishing
B Mining and quarrying C Mining and quarrying
C Manufacturing D Manufacturing
D Electricity, gas, steam and air condition-

ing supply
E Electricity, gas and water supply

E Water supply, sewerage, waste manage-
ment and remediation activities

F Construction F Construction
G Wholesale and retail trade; repair of mo-

tor vehicles and motorcycles
G Wholesale and retail trade: repair of mo-

tor vehicles, motorcycles and personal and
household goods

I Accommodation and food service activi-
ties

H Hotels and restaurants

H Transportation and storage I Transport, storage and communications
J Information and communication
K Financial and insurance activities J Financial intermediation
L Real estate activities K Real estate, renting and business activities
M Professional, scientific and technical activ-

ities
N Administrative and support service activ-

ities
O Public administration and defence; com-

pulsory social security
L Public administration and defence; com-

pulsory social security
P Education M Education
Q Human health and social work activities N Health and social work
R Arts, entertainment and recreation O Other community, social and personal ser-

vices activities
S Other service activities
T Activities of households as employ-

ers; undifferentiated goods- and services-
producing activities of households for own
use

P Activities of private households as em-
ployers and undifferentiated production
activities of private households

U Activities of extraterritorial organisations
and bodies

Q Extraterritorial organisations and bodies

Notes: This table presents the correspondence between the two revisions (Rev. 2. and Rev. 1.1) of the
NACE classification.
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B Descriptive Statistics

Table B.1 shows the number of regions in each cluster and their centers (within-cluster
averages).

Table B.1: Clusters and K-means

K-means
Cluster N Agriculture Industry Service

1 Industry intensive 72 -0.29 0.85 -0.47
2 Agriculture intensive 47 1.17 -0.47 -0.47
3 Service intensive 44 -0.77 -0.90 1.27

Notes: This table presents the clusters, the number of regions in each group, and their within-
cluster average in clustering variables. N is the number of regions in the cluster. The clustering
variables are expressed in standard deviation. Agriculture, Industry, and Service represent the
regional share of employment in these sectors, which are standardized at the country level.

Table B.2 shows the summary statistics of the change in the outcome variables, in the
technology stock (per thousand workers in 1980), as well as in imports and final demand,
over the whole period of analysis (1995–2017).

Table B.2: Summary statistics of the change in the long run (1995–2017)

Variable Mean SD Min Q1 Q2 Q3 Max N

Emp 0.9 0.6 -0.2 0.5 0.8 1.1 3.2 163
Emp-to-pop 0.2 0.1 -0.3 0.1 0.2 0.3 0.6 163
Wage 0.7 0.6 -0.5 0.4 0.6 1.0 3.0 162

ROB 2.1 1.7 0.0 1.0 1.7 2.8 7.1 163
CT 1.0 0.6 0.2 0.6 0.7 1.0 3.3 163
IT 0.9 0.7 0.1 0.4 0.6 0.9 2.9 163
SDB 3.0 2.0 0.2 1.3 2.5 4.2 9.6 163

Imports 2.0 0.9 0.4 1.3 1.9 2.7 3.9 163
Final demand 5.1 7.1 -8.0 0.0 5.1 8.3 42.0 163

Notes: This table shows the summary statistics of the change in the outcome, independent, and control vari-
ables for the 163 NUTS-2 regions between 1995 and 2017. Outcomes variables are employment, employment-to-
population ratio (Emp-to-pop. ratio)—measured as the total number of employed persons aged 15-64 over the
total population—, average yearly wage per worker (Wage) in thousands euros of 2015—calculated as the ratio
between total labor compensation and the level of employment, and Wage share—measured as total compensation
over gross value added. All outcome variables are annualized (this is, divided by the number of years in the pe-
riod). Data are from the ARDECO database. Independent variables are technology stock (per thousand workers in
1980) in robots (ROB), communication technology (CT), information technology (IT), and software and database
(SDB). Data are from the IFR for robots and EU-KLEMS for the rest. Control variables are imports—measured
as imports from China using the OECD Trade in Value Added database—and final demand—measured as the real
consumption index from the Inter-Country Input-Output database.

Tables B.3 and B.4 show the summary statistics for technology stock (per thousand
workers in 1980) by, respectively, region specialization and productivity level. Regions are
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grouped into three categories for specialization: agriculture-intensive, industry-intensive and
service-intensive regions.

Table B.3: Summary statistics for technology stock by region specialization in 1995

Tech Cluster Mean SD Min Q1 Q2 Q3 Max N

ROB Agriculture intensive 0.58 0.49 0.00 0.30 0.45 0.66 1.86 47
Industry intensive 1.02 0.68 0.00 0.51 0.86 1.44 2.48 72
Service intensive 0.56 0.52 0.00 0.17 0.50 0.77 1.86 44

CT Agriculture intensive 1.16 2.28 0.06 0.32 0.43 0.75 11.55 47
Industry intensive 1.32 2.60 0.06 0.38 0.60 0.80 11.89 72
Service intensive 1.39 2.47 0.07 0.33 0.72 0.98 11.97 44

IT Agriculture intensive 0.44 1.11 0.05 0.14 0.25 0.35 7.71 47
Industry intensive 0.70 1.60 0.05 0.17 0.35 0.45 8.37 72
Service intensive 0.62 1.54 0.04 0.17 0.36 0.51 10.45 44

SDB Agriculture intensive 2.26 4.78 0.04 0.74 0.93 2.21 24.94 47
Industry intensive 2.86 5.69 0.06 0.78 1.03 1.99 27.60 72
Service intensive 2.76 6.38 0.08 0.92 1.07 1.91 37.47 44

Notes: This table shows the summary statistics of the technology stock (per thousand workers in 1980) by region specialization
in 1995. The variables are technology stock (per thousand workers in 1980) in robots (ROB), communication technology (CT),
information technology (IT), and software and database (SDB). Data are from the IFR for robots and EU-KLEMS for the
rest. We apply a k-means clustering taking the regional employment share in 1980 in Agriculture, Industry and Services.

Table B.4: Summary statistics for technology stock by productivity level in 1995

Tech Productivity Mean SD Min Q1 Q2 Q3 Max N

ROB High Productivity 0.93 0.65 0.00 0.40 0.77 1.34 2.48 82
Low Productivity 0.61 0.57 0.00 0.18 0.45 0.79 2.29 81

CT High Productivity 1.07 1.90 0.06 0.34 0.59 0.77 11.97 82
Low Productivity 1.52 2.92 0.06 0.31 0.58 0.87 11.89 81

IT High Productivity 0.89 2.00 0.05 0.16 0.38 0.53 10.45 82
Low Productivity 0.32 0.26 0.04 0.15 0.28 0.35 1.17 81

SDB High Productivity 2.46 4.79 0.05 0.81 1.65 2.23 37.47 82
Low Productivity 2.86 6.36 0.04 0.75 0.96 1.73 27.60 81

Notes: This table shows the summary statistics of the technology stock (per thousand workers in 1980) by productivity
level in 1995. The variables are technology stock (per thousand workers in 1980) in robots (ROB), communication
technology (CT), information technology (IT), and software and database (SDB). Data are from the IFR for robots and
EU-KLEMS for the rest. We estimate labor productivity in 1980 by calculating the ratio between Gross Value Added
(GVA) at constant prices and employment (in thousands) for each region. We categorize regions into the high (low)
productivity group when their productivity level is above (below) the median (considering the entire sample of regions).

C Regressions
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Table C.1: Annualized long-run adjustments to technology exposure. 1995-2017.

IV and OLS Regression - Dep. var.:
Employment Emp-to-pop ratio Average wage

2SLS OLS 2SLS OLS 2SLS OLS

Robot Exposure 0.22∗∗∗ 0.23∗∗∗ 0.07∗∗∗ 0.07∗∗∗ −0.26∗∗∗ −0.18∗∗

(0.08) (0.07) (0.02) (0.02) (0.08) (0.07)
CT Exposure −0.10∗∗ −0.10∗∗ 0.00 0.00 0.23∗∗∗ 0.20∗∗∗

(0.05) (0.05) (0.01) (0.01) (0.05) (0.05)
IT Exposure 0.09∗ 0.12∗∗ 0.01 0.02 −0.03 −0.02

(0.05) (0.05) (0.01) (0.01) (0.05) (0.06)
Software/Database Exposure 0.07 0.07 −0.01 −0.01 0.09 0.09

(0.06) (0.06) (0.01) (0.01) (0.06) (0.06)
Final demand Yes Yes Yes Yes Yes Yes
Trade Yes Yes Yes Yes Yes Yes

R2 0.24 0.26 0.25 0.25 0.24 0.18
Adj. R2 0.21 0.23 0.22 0.23 0.21 0.15
Num. obs. 163 163 163 163 162 162

Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the estimated
OLS and IV-regressions of labor outcomes on technology 𝐾 exposure (where 𝐾 is Robot, IT, CT, and Software/Database respectively). The
dependent variables represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage
(in log-difference) during the period 1995-2017. The technology exposure to 𝐾 is calculated using the shift-share method and subsequently
standardized. Therefore, the coefficient can be interpreted as a 1-STD change in exposure to technology 𝐾 during the period. Control variables
include changes in trade exposure, final demand (both measured using shift-share), and exposure to other technologies.

Table C.2: Adjustments to robot exposure during robot investment cycles

IV regression - Dep. var.: annualized change in the outcome variable
Industrial Robots Robotics

1995-2002 2002-2006 2006-2013 2013-2017

[A] Employment (in percent)

ROB Exposure 0.13 −0.56∗∗∗ 0.55∗∗∗ 0.09
(0.13) (0.09) (0.09) (0.08)

[B] Employment-to-population ratio (in pp.)

ROB Exposure 0.19∗∗∗ −0.14∗∗∗ 0.36∗∗∗ −0.05∗

(0.04) (0.03) (0.04) (0.03)
[C] Average wage (in percent)

ROB Exposure −1.01∗∗∗ −0.55∗∗∗ 0.05 0.41∗∗∗

(0.15) (0.10) (0.09) (0.08)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the

estimated IV-regressions of labor outcomes on robot exposure over the phases of the robot’s life cycle. The dependent variables
represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage (in log-
difference) during the phases of the robot’s life cycle. Robot exposure is calculated using the shift-share method and subsequently
standardized at the phase level. Therefore, the coefficient can be interpreted as a 1-STD change in exposure to robot in each
phase. Control variables include changes in trade exposure, final demand (both measured using shift-share), and exposure to other
technologies.
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Table C.3: Adjustments to communication technology exposure during CT invest-
ment cycles

IV regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2001 2001-2005 2005-2011 2011-2014 2014-2017

[A] Employment (in percent)

CT Exposure −0.33∗∗∗ −0.22∗∗ −0.09 −0.39∗∗∗ −0.00
(0.10) (0.09) (0.08) (0.10) (0.08)

[B] Employment-to-population ratio (in pp.)

CT Exposure −0.06 −0.00 −0.01 −0.17∗∗∗ −0.02
(0.04) (0.04) (0.05) (0.03) (0.03)

[C] Average wage (in percent)

CT Exposure 0.24∗∗ 0.99∗∗∗ −0.08 0.11 −0.07
(0.11) (0.11) (0.08) (0.12) (0.08)

Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the
coefficients from the estimated IV-regressions of labor outcomes on CT exposure over the phases of the CT’s life
cycle. The dependent variables represent the annual change in regional employment (in log-difference), employment-
to-population ratio, and average wage (in log-difference) during the phases of the CT’s life cycle. CT exposure is
calculated using the shift-share method and subsequently standardized at the phase level. Therefore, the coefficient
can be interpreted as a 1-STD change in exposure to CT in each phase. Control variables include changes in trade
exposure, final demand (both measured using shift-share), and exposure to other technologies.

34



Table C.4: Adjustments to information technology exposure during IT investment
cycles

IV regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2001 2001-2004 2004-2008 2008-2014 2014-2017

[A] Employment (in percent)

IT Exposure 0.12 −0.44∗∗∗ 0.11 −0.23∗∗ −0.16∗

(0.11) (0.10) (0.07) (0.10) (0.09)
[B] Employment-to-population ratio (in pp.)

IT Exposure 0.08∗ −0.14∗∗∗ 0.07∗∗∗ −0.13∗∗∗ −0.08∗∗

(0.04) (0.05) (0.03) (0.03) (0.03)
[C] Average wage (in percent)

IT Exposure 0.04 −0.01 0.10 0.11 −0.12
(0.12) (0.13) (0.10) (0.09) (0.10)

Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the
coefficients from the estimated IV-regressions of labor outcomes on IT exposure over the phases of the IT’s life
cycle. The dependent variables represent the annual change in regional employment (in log-difference), employment-
to-population ratio, and average wage (in log-difference) during the phases of the IT’s life cycle. IT exposure is
calculated using the shift-share method and subsequently standardized at the phase level. Therefore, the coefficient
can be interpreted as a 1-STD change in exposure to IT in each phase. Control variables include changes in trade
exposure, final demand (both measured using shift-share), and exposure to other technologies.
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Table C.5: Adjustments to software/database exposure during SDB investment cycles

IV regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2000 2000-2005 2005-2008 2008-2014 2014-2017

[A] Employment (in percent)

SDB Exposure −0.09 0.12 0.10∗ 0.01 0.25∗∗

(0.12) (0.07) (0.06) (0.14) (0.10)
[B] Employment-to-population ratio (in pp.)

SDB Exposure −0.01 0.02 0.06∗∗ −0.10∗∗ 0.07∗∗

(0.04) (0.03) (0.02) (0.05) (0.03)
[C] Average wage (in percent)

SDB Exposure −0.23∗ −0.23∗∗∗ 0.07 0.12 0.14
(0.14) (0.08) (0.11) (0.12) (0.10)

Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the
coefficients from the estimated IV-regressions of labor outcomes on SDB exposure over the phases of the SDB’s life
cycle. The dependent variables represent the annual change in regional employment (in log-difference), employment-
to-population ratio, and average wage (in log-difference) during the phases of the SDB’s life cycle. SDB exposure is
calculated using the shift-share method and subsequently standardized at the phase level. Therefore, the coefficient
can be interpreted as a 1-STD change in exposure to SDB in each phase. Control variables include changes in trade
exposure, final demand (both measured using shift-share), and exposure to other technologies.
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Table C.6: Adjustments to robot exposure during robot investment cycles by cluster

IV regression - Dep. var.: annualized change in the outcome variable
Industrial Robots Robotics

1995-2002 2002-2006 2006-2013 2013-2017
[A] Employment (in percent)
ROB Exposure 0.13 −0.56∗∗∗ 0.55∗∗∗ 0.09

(0.13) (0.09) (0.09) (0.08)
in Agriculture 0.07 −0.57∗∗∗ 0.73∗∗∗ 0.22∗

(0.25) (0.20) (0.19) (0.13)
in Industry 0.28∗∗ −0.45∗∗∗ 0.53∗∗∗ −0.03

(0.14) (0.11) (0.13) (0.10)
in Service −0.08 −0.71∗∗∗ 0.37∗∗ 0.14

(0.35) (0.21) (0.18) (0.24)
in Low 0.25 −0.55∗∗ 0.52∗∗∗ −0.12

(0.21) (0.22) (0.17) (0.16)
in High 0.16 −0.73∗∗∗ 0.54∗∗∗ 0.07

(0.18) (0.10) (0.09) (0.09)
[B] Employment-to-population ratio (in pp.)
ROB Exposure 0.19∗∗∗ −0.14∗∗∗ 0.36∗∗∗ −0.05∗

(0.04) (0.03) (0.04) (0.03)
in Agriculture 0.18∗∗∗ −0.11 0.37∗∗∗ −0.01

(0.06) (0.07) (0.07) (0.04)
in Industry 0.19∗∗∗ −0.13∗∗∗ 0.37∗∗∗ −0.10∗∗

(0.05) (0.03) (0.07) (0.04)
in Service 0.21 −0.20∗∗ 0.33∗∗∗ −0.01

(0.13) (0.09) (0.10) (0.05)
in Low 0.26∗∗∗ −0.18∗∗ 0.36∗∗∗ −0.17∗∗∗

(0.06) (0.08) (0.08) (0.04)
in High 0.16∗∗ −0.18∗∗∗ 0.35∗∗∗ −0.04

(0.06) (0.04) (0.05) (0.03)
[C] Average wage (in percent)
ROB Exposure −1.01∗∗∗ −0.55∗∗∗ 0.05 0.41∗∗∗

(0.15) (0.10) (0.09) (0.08)
in Agriculture −1.37∗∗∗ −0.59∗∗∗ −0.21 0.26∗

(0.31) (0.17) (0.22) (0.15)
in Industry −0.54∗∗∗ −0.64∗∗∗ 0.16 0.48∗∗∗

(0.16) (0.12) (0.11) (0.06)
in Service −1.56∗∗∗ −0.61∗ 0.03 0.41∗

(0.41) (0.31) (0.22) (0.22)
in Low −1.15∗∗∗ −0.65∗∗ 0.01 0.68∗∗∗

(0.24) (0.28) (0.17) (0.14)
in High −0.83∗∗∗ −0.08 0.07 0.48∗∗∗

(0.20) (0.11) (0.10) (0.08)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the estimated

IV-regressions of labor outcomes on robot exposure over the phases of the robot’s life cycle in the different types of regions. The dependent
variables represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage (in
log-difference) during the phases of the robot’s life cycle. Robot exposure is calculated using the shift-share method and subsequently
standardized at the phase level. Therefore, the coefficient can be interpreted as a 1-STD change in exposure to robot in each phase. Control
variables include changes in trade exposure, final demand (both measured using shift-share), and exposure to other technologies. We cluster
regions using a k-means algorithm using the share of employment in Agriculture, Industry, and Services in each region in 1980. To distinguish
productivity, we classify regions as high (low) productive if their productivity level in 1980 is above (below) the median.

37



Table C.7: Adjustments to communication technology exposure during CT investment cycles

IV regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2001 2001-2005 2005-2011 2011-2014 2014-2017
[A] Employment (in percent)
CT Exposure −0.33∗∗∗ −0.22∗∗ −0.09 −0.39∗∗∗ −0.00

(0.10) (0.09) (0.08) (0.10) (0.08)
in Agriculture −0.54∗∗∗ 0.05 −0.03 −0.68∗∗∗ −0.04

(0.19) (0.22) (0.22) (0.18) (0.12)
in Industry −0.06 −0.12 0.09 −0.18 0.12

(0.12) (0.12) (0.16) (0.12) (0.12)
in Service −0.58∗∗ −0.32∗ −0.21∗ −0.36 −0.06

(0.22) (0.18) (0.12) (0.23) (0.17)
in Low −0.27∗ −0.39∗∗∗ −0.15 −1.00∗∗∗ 0.66∗∗∗

(0.16) (0.12) (0.11) (0.23) (0.18)
in High −0.26∗ 0.01 −0.10 0.01 −0.27∗∗∗

(0.14) (0.16) (0.16) (0.09) (0.09)
[B] Employment-to-population ratio (in pp.)
CT Exposure −0.06 −0.00 −0.01 −0.17∗∗∗ −0.02

(0.04) (0.04) (0.05) (0.03) (0.03)
in Agriculture −0.06 0.04 0.05 −0.20∗∗∗ 0.02

(0.05) (0.09) (0.10) (0.05) (0.04)
in Industry −0.02 −0.01 0.14 −0.11∗∗∗ 0.02

(0.05) (0.04) (0.10) (0.04) (0.05)
in Service −0.15 −0.00 −0.03 −0.18∗∗∗ −0.06

(0.09) (0.09) (0.08) (0.06) (0.05)
in Low 0.02 −0.04 −0.03 −0.33∗∗∗ 0.24∗∗∗

(0.05) (0.05) (0.07) (0.07) (0.06)
in High −0.07 0.05 −0.04 −0.07∗∗ −0.10∗∗∗

(0.05) (0.07) (0.09) (0.03) (0.03)
[C] Average wage (in percent)
CT Exposure 0.24∗∗ 0.99∗∗∗ −0.08 0.11 −0.07

(0.11) (0.11) (0.08) (0.12) (0.08)
in Agriculture 0.31 0.90∗∗∗ 0.16 −0.00 0.09

(0.21) (0.24) (0.22) (0.34) (0.13)
in Industry 0.32∗∗ 1.20∗∗∗ −0.28∗∗ 0.11 −0.08

(0.13) (0.13) (0.11) (0.16) (0.10)
in Service 0.24 0.44∗ −0.28 −0.03 −0.45∗∗

(0.26) (0.26) (0.18) (0.21) (0.17)
in Low 0.21 1.08∗∗∗ −0.11 0.18 −0.89∗∗∗

(0.17) (0.17) (0.13) (0.23) (0.20)
in High 0.19 0.23 −0.08 −0.14 0.06

(0.14) (0.14) (0.12) (0.17) (0.10)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the

estimated IV-regressions of labor outcomes on CT exposure over the phases of the CT’s life cycle in the different types of regions.
The dependent variables represent the annual change in regional employment (in log-difference), employment-to-population ratio,
and average wage (in log-difference) during the phases of the CT’s life cycle. CT exposure is calculated using the shift-share method
and subsequently standardized at the phase level. Therefore, the coefficient can be interpreted as a 1-STD change in exposure
to CT in each phase. Control variables include changes in trade exposure, final demand (both measured using shift-share), and
exposure to other technologies. We cluster regions using a k-means algorithm using the share of employment in Agriculture,
Industry, and Services in each region in 1980. To distinguish productivity, we classify regions as high (low) productive if their
productivity level in 1980 is above (below) the median.
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Table C.8: Adjustments to information technology exposure during IT investment cycles

IV regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2001 2001-2004 2004-2008 2008-2014 2014-2017
[A] Employment (in percent)
IT Exposure 0.12 −0.44∗∗∗ 0.11 −0.23∗∗ −0.16∗

(0.11) (0.10) (0.07) (0.10) (0.09)
in Agriculture 0.22 −0.32 0.28∗ −0.08 −0.40∗∗

(0.25) (0.25) (0.16) (0.18) (0.17)
in Industry 0.16 −0.32∗∗ 0.16∗ −0.20 −0.11

(0.11) (0.13) (0.09) (0.12) (0.11)
in Service −0.20 −0.79∗∗∗ −0.28∗∗ −0.12 −0.12

(0.26) (0.25) (0.13) (0.19) (0.24)
in Low −0.36 −0.49∗∗ −0.11 0.09 −0.96∗∗∗

(0.24) (0.22) (0.13) (0.26) (0.30)
in High 0.31∗∗ −0.27∗∗ 0.31∗∗∗ −0.45∗∗∗ 0.05

(0.12) (0.10) (0.07) (0.08) (0.09)
[B] Employment-to-population ratio (in pp.)
IT Exposure 0.08∗ −0.14∗∗∗ 0.07∗∗∗ −0.13∗∗∗ −0.08∗∗

(0.04) (0.05) (0.03) (0.03) (0.03)
in Agriculture 0.01 −0.09 0.07 −0.10∗ −0.22∗∗∗

(0.07) (0.09) (0.06) (0.05) (0.06)
in Industry 0.06 −0.14∗∗∗ 0.10∗∗∗ −0.12∗∗ −0.08∗

(0.05) (0.04) (0.03) (0.05) (0.04)
in Service 0.04 −0.28∗∗ −0.06 −0.10 −0.05

(0.11) (0.13) (0.05) (0.07) (0.07)
in Low −0.03 −0.02 0.05 0.02 −0.60∗∗∗

(0.08) (0.09) (0.05) (0.08) (0.09)
in High 0.11∗∗ −0.13∗∗ 0.09∗∗∗ −0.17∗∗∗ 0.00

(0.05) (0.05) (0.03) (0.03) (0.03)
[C] Average wage (in percent)
IT Exposure 0.04 −0.01 0.10 0.11 −0.12

(0.12) (0.13) (0.10) (0.09) (0.10)
in Agriculture −0.05 0.23 0.21 0.15 0.17

(0.28) (0.34) (0.18) (0.22) (0.19)
in Industry 0.34∗∗ −0.20 0.17 0.02 −0.08

(0.13) (0.14) (0.15) (0.11) (0.10)
in Service −0.16 −0.08 −0.06 0.15 −0.38

(0.30) (0.31) (0.27) (0.17) (0.23)
in Low 0.28 0.17 −0.08 0.59∗∗ −0.02

(0.27) (0.33) (0.19) (0.23) (0.33)
in High 0.08 0.02 0.17∗ 0.03 −0.09

(0.13) (0.08) (0.09) (0.09) (0.10)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the

estimated IV-regressions of labor outcomes on IT exposure over the phases of the IT’s life cycle in the different types of regions.
The dependent variables represent the annual change in regional employment (in log-difference), employment-to-population ratio,
and average wage (in log-difference) during the phases of the IT’s life cycle. IT exposure is calculated using the shift-share method
and subsequently standardized at the phase level. Therefore, the coefficient can be interpreted as a 1-STD change in exposure
to IT in each phase. Control variables include changes in trade exposure, final demand (both measured using shift-share), and
exposure to other technologies. We cluster regions using a k-means algorithm using the share of employment in Agriculture,
Industry, and Services in each region in 1980. To distinguish productivity, we classify regions as high (low) productive if their
productivity level in 1980 is above (below) the median.
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Table C.9: Adjustments to software/database exposure during SDB investment cycles

IV regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2000 2000-2005 2005-2008 2008-2014 2014-2017
[A] Employment (in percent)
SDB Exposure −0.09 0.12 0.10∗ 0.01 0.25∗∗

(0.12) (0.07) (0.06) (0.14) (0.10)
in Agriculture 0.29 0.08 0.12 −0.17 0.67∗∗∗

(0.23) (0.15) (0.14) (0.26) (0.18)
in Industry −0.30∗∗ 0.04 0.02 −0.36∗ 0.05

(0.14) (0.10) (0.07) (0.19) (0.13)
in Service −0.18 0.20 0.26∗∗ 0.07 0.38

(0.25) (0.15) (0.10) (0.29) (0.24)
in Low −0.30 0.39∗∗∗ 0.12 0.13 0.39∗∗

(0.20) (0.12) (0.09) (0.27) (0.17)
in High 0.08 −0.23∗∗ 0.03 0.19 −0.09

(0.19) (0.11) (0.07) (0.12) (0.11)
[B] Employment-to-population ratio (in pp.)
SDB Exposure −0.01 0.02 0.06∗∗ −0.10∗∗ 0.07∗∗

(0.04) (0.03) (0.02) (0.05) (0.03)
in Agriculture 0.03 0.07 0.06 −0.12 0.26∗∗∗

(0.06) (0.06) (0.05) (0.08) (0.06)
in Industry −0.09 −0.01 0.02 −0.21∗∗∗ 0.04

(0.06) (0.04) (0.03) (0.08) (0.05)
in Service −0.00 −0.00 0.16∗∗∗ −0.09 0.10

(0.10) (0.07) (0.05) (0.11) (0.07)
in Low −0.18∗∗ 0.10∗ 0.02 −0.09 0.15∗∗∗

(0.07) (0.05) (0.04) (0.08) (0.05)
in High 0.07 −0.07 0.09∗∗∗ −0.09∗ −0.04

(0.07) (0.05) (0.03) (0.05) (0.04)
[C] Average wage (in percent)
SDB Exposure −0.23∗ −0.23∗∗∗ 0.07 0.12 0.14

(0.14) (0.08) (0.11) (0.12) (0.10)
in Agriculture −0.83∗∗∗ −0.28∗ 0.14 −0.12 −0.48∗∗

(0.27) (0.16) (0.19) (0.31) (0.20)
in Industry 0.30∗ −0.21∗∗ −0.00 0.04 0.04

(0.16) (0.08) (0.17) (0.17) (0.11)
in Service −0.20 −0.29 0.08 0.40 0.83∗∗∗

(0.32) (0.20) (0.26) (0.25) (0.23)
in Low 0.08 −0.33∗∗ 0.31∗ 0.20 0.59∗∗∗

(0.23) (0.16) (0.19) (0.24) (0.19)
in High −0.24 0.20∗∗ −0.15 0.02 0.14

(0.20) (0.09) (0.11) (0.14) (0.12)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from

the estimated IV-regressions of labor outcomes on SDB exposure over the phases of the SDB’s life cycle in the different types
of regions. The dependent variables represent the annual change in regional employment (in log-difference), employment-to-
population ratio, and average wage (in log-difference) during the phases of the SDB’s life cycle. SDB exposure is calculated using
the shift-share method and subsequently standardized at the phase level. Therefore, the coefficient can be interpreted as a 1-STD
change in exposure to SDB in each phase. Control variables include changes in trade exposure, final demand (both measured using
shift-share), and exposure to other technologies. We cluster regions using a k-means algorithm using the share of employment in
Agriculture, Industry, and Services in each region in 1980. To distinguish productivity, we classify regions as high (low) productive
if their productivity level in 1980 is above (below) the median.
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Table C.10: Adjustments to robot exposure during robot investment cycles by cluster: OLS results

OLS regression - Dep. var.: annualized change in the outcome variable
Industrial Robots Robotics

1995-2002 2002-2006 2006-2013 2013-2017
[A] Employment (in percent)
ROB Exposure 0.23∗ −0.53∗∗∗ 0.44∗∗∗ 0.09

(0.12) (0.09) (0.09) (0.08)
in Agriculture 0.27 −0.70∗∗∗ 0.65∗∗∗ 0.31∗

(0.27) (0.22) (0.24) (0.16)
in Industry 0.29∗∗ −0.33∗∗∗ 0.36∗∗∗ 0.01

(0.12) (0.10) (0.10) (0.09)
in Service −0.08 −1.00∗∗∗ 0.48∗∗ 0.11

(0.41) (0.25) (0.22) (0.29)
in Low 0.34∗ −0.39∗ 0.52∗∗∗ −0.05

(0.20) (0.23) (0.18) (0.17)
in High 0.22 −0.65∗∗∗ 0.41∗∗∗ 0.01

(0.15) (0.10) (0.09) (0.08)
[B] Employment-to-population ratio (in pp.)
ROB Exposure 0.21∗∗∗ −0.14∗∗∗ 0.31∗∗∗ −0.05∗∗

(0.04) (0.03) (0.04) (0.03)
in Agriculture 0.24∗∗∗ −0.17∗∗ 0.40∗∗∗ −0.00

(0.07) (0.08) (0.09) (0.05)
in Industry 0.18∗∗∗ −0.10∗∗∗ 0.26∗∗∗ −0.07∗∗

(0.05) (0.03) (0.05) (0.03)
in Service 0.27∗ −0.31∗∗∗ 0.44∗∗∗ −0.04

(0.15) (0.11) (0.12) (0.06)
in Low 0.27∗∗∗ −0.16∗ 0.36∗∗∗ −0.17∗∗∗

(0.06) (0.08) (0.08) (0.04)
in High 0.16∗∗∗ −0.16∗∗∗ 0.30∗∗∗ −0.04

(0.05) (0.04) (0.05) (0.03)
[C] Average wage (in percent)
ROB Exposure −0.92∗∗∗ −0.52∗∗∗ 0.04 0.43∗∗∗

(0.15) (0.10) (0.08) (0.08)
in Agriculture −1.58∗∗∗ −0.65∗∗∗ −0.16 0.30

(0.35) (0.20) (0.26) (0.19)
in Industry −0.45∗∗∗ −0.51∗∗∗ 0.11 0.44∗∗∗

(0.13) (0.10) (0.08) (0.05)
in Service −1.61∗∗∗ −0.64 0.02 0.44

(0.49) (0.39) (0.27) (0.29)
in Low −1.00∗∗∗ −0.60∗∗ −0.02 0.84∗∗∗

(0.24) (0.28) (0.17) (0.14)
in High −0.72∗∗∗ −0.11 0.02 0.45∗∗∗

(0.17) (0.11) (0.08) (0.07)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the

estimated OLS regressions of labor outcomes on robot exposure over the phases of the robot’s life cycle in the different types of regions.
The dependent variables represent the annual change in regional employment (in log-difference), employment-to-population ratio, and
average wage (in log-difference) during the phases of the robot’s life cycle. Robot exposure is calculated using the shift-share method and
subsequently standardized at the phase level. Therefore, the coefficient can be interpreted as a 1-STD change in exposure to robot in
each phase. Control variables include changes in trade exposure, final demand (both measured using shift-share), and exposure to other
technologies. We cluster regions using a k-means algorithm using the share of employment in Agriculture, Industry, and Services in each
region in 1980. To distinguish productivity, we classify regions as high (low) productive if their productivity level in 1980 is above (below)
the median.
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Table C.11: Adjustments to communication technology exposure during CT investment cycles by cluster:
OLS results

OLS regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2001 2001-2005 2005-2011 2011-2014 2014-2017
[A] Employment (in percent)
CT Exposure −0.34∗∗∗ −0.24∗∗∗ −0.06 −0.40∗∗∗ −0.02

(0.10) (0.09) (0.07) (0.10) (0.08)
in Agriculture −0.58∗∗∗ −0.04 0.08 −0.76∗∗∗ −0.17

(0.21) (0.27) (0.24) (0.20) (0.17)
in Industry −0.10 −0.11 0.10 −0.20∗ 0.08

(0.12) (0.12) (0.12) (0.11) (0.13)
in Service −0.53∗∗ −0.35∗∗ −0.26∗ −0.45∗∗ −0.07

(0.20) (0.17) (0.14) (0.22) (0.13)
in Low −0.29∗ −0.36∗∗∗ −0.11 −1.01∗∗∗ 0.62∗∗∗

(0.16) (0.11) (0.09) (0.23) (0.20)
in High −0.23∗ −0.22 0.08 −0.02 −0.25∗∗∗

(0.13) (0.17) (0.16) (0.09) (0.08)
[B] Employment-to-population ratio (in pp.)
CT Exposure −0.07∗∗ −0.01 −0.00 −0.18∗∗∗ −0.03

(0.03) (0.03) (0.04) (0.03) (0.03)
in Agriculture −0.06 0.00 0.10 −0.24∗∗∗ −0.01

(0.05) (0.10) (0.12) (0.06) (0.06)
in Industry −0.02 0.01 0.12 −0.13∗∗∗ −0.00

(0.05) (0.04) (0.08) (0.04) (0.05)
in Service −0.17∗∗ −0.04 −0.08 −0.15∗∗ −0.04

(0.08) (0.08) (0.10) (0.06) (0.04)
in Low 0.01 −0.02 −0.02 −0.34∗∗∗ 0.24∗∗∗

(0.05) (0.04) (0.06) (0.06) (0.06)
in High −0.08∗ −0.06 0.07 −0.08∗∗∗ −0.09∗∗∗

(0.05) (0.08) (0.09) (0.03) (0.03)
[C] Average wage (in percent)
CT Exposure 0.28∗∗ 0.95∗∗∗ −0.07 0.18 −0.13

(0.11) (0.11) (0.07) (0.12) (0.08)
in Agriculture 0.32 1.10∗∗∗ −0.03 0.11 0.13

(0.23) (0.32) (0.26) (0.38) (0.19)
in Industry 0.41∗∗∗ 1.04∗∗∗ −0.19∗∗ 0.04 −0.16

(0.13) (0.13) (0.09) (0.16) (0.11)
in Service 0.33 0.51∗∗ −0.31 0.04 −0.29∗∗

(0.24) (0.25) (0.21) (0.21) (0.14)
in Low 0.28 0.94∗∗∗ −0.08 0.07 −1.05∗∗∗

(0.19) (0.16) (0.11) (0.24) (0.21)
in High 0.20 0.37∗∗ −0.25∗∗ −0.04 −0.03

(0.14) (0.15) (0.12) (0.17) (0.09)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the estimated OLS

regressions of labor outcomes on CT exposure over the phases of the CT’s life cycle in the different types of regions. The dependent variables
represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage (in log-difference)
during the phases of the CT’s life cycle. CT exposure is calculated using the shift-share method and subsequently standardized at the phase
level. Therefore, the coefficient can be interpreted as a 1-STD change in exposure to CT in each phase. Control variables include changes in trade
exposure, final demand (both measured using shift-share), and exposure to other technologies. We cluster regions using a k-means algorithm using
the share of employment in Agriculture, Industry, and Services in each region in 1980. To distinguish productivity, we classify regions as high
(low) productive if their productivity level in 1980 is above (below) the median.
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Table C.12: Adjustments to information technology exposure during IT investment cycles by cluster: OLS
results

OLS regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2001 2001-2004 2004-2008 2008-2014 2014-2017
[A] Employment (in percent)
IT Exposure 0.22∗∗ −0.46∗∗∗ 0.11 −0.19∗ −0.09

(0.11) (0.10) (0.07) (0.10) (0.09)
in Agriculture 0.28 −0.42∗ 0.39∗∗ −0.05 −0.42∗∗

(0.29) (0.24) (0.19) (0.25) (0.18)
in Industry 0.18 −0.27∗∗ 0.17∗ −0.27∗ −0.05

(0.12) (0.13) (0.10) (0.14) (0.11)
in Service −0.05 −0.84∗∗∗ −0.19∗ −0.01 −0.08

(0.24) (0.24) (0.11) (0.14) (0.20)
in Low −0.20 −0.44∗ −0.13 0.19 −0.88∗∗∗

(0.28) (0.23) (0.15) (0.24) (0.31)
in High 0.35∗∗∗ −0.29∗∗∗ 0.28∗∗∗ −0.38∗∗∗ 0.10

(0.11) (0.10) (0.06) (0.09) (0.09)
[B] Employment-to-population ratio (in pp.)
IT Exposure 0.11∗∗∗ −0.17∗∗∗ 0.06∗∗∗ −0.13∗∗∗ −0.06∗∗

(0.04) (0.04) (0.02) (0.03) (0.03)
in Agriculture 0.02 −0.15 0.11 −0.13∗ −0.23∗∗∗

(0.08) (0.09) (0.07) (0.08) (0.07)
in Industry 0.07 −0.11∗∗ 0.10∗∗∗ −0.17∗∗∗ −0.06

(0.05) (0.04) (0.04) (0.06) (0.04)
in Service 0.11 −0.32∗∗ −0.06 −0.06 −0.04

(0.09) (0.12) (0.04) (0.05) (0.06)
in Low 0.00 −0.01 0.03 −0.04 −0.62∗∗∗

(0.09) (0.10) (0.05) (0.07) (0.09)
in High 0.14∗∗∗ −0.17∗∗∗ 0.09∗∗∗ −0.15∗∗∗ 0.02

(0.04) (0.05) (0.02) (0.04) (0.03)
[C] Average wage (in percent)
IT Exposure −0.01 −0.04 0.10 0.11 −0.11

(0.12) (0.13) (0.10) (0.09) (0.10)
in Agriculture −0.17 0.08 0.22 0.27 0.18

(0.32) (0.36) (0.21) (0.29) (0.21)
in Industry 0.38∗∗∗ −0.22 0.16 −0.07 −0.11

(0.14) (0.14) (0.16) (0.12) (0.10)
in Service −0.17 0.09 0.06 0.20 −0.20

(0.28) (0.31) (0.23) (0.12) (0.21)
in Low 0.23 −0.29 −0.08 0.40∗ 0.17

(0.32) (0.36) (0.22) (0.22) (0.32)
in High 0.06 0.05 0.10 0.10 −0.09

(0.12) (0.08) (0.08) (0.10) (0.10)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the estimated OLS

regressions of labor outcomes on IT exposure over the phases of the IT’s life cycle in the different types of regions. The dependent variables
represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage (in log-difference)
during the phases of the IT’s life cycle. IT exposure is calculated using the shift-share method and subsequently standardized at the phase level.
Therefore, the coefficient can be interpreted as a 1-STD change in exposure to IT in each phase. Control variables include changes in trade
exposure, final demand (both measured using shift-share), and exposure to other technologies. We cluster regions using a k-means algorithm using
the share of employment in Agriculture, Industry, and Services in each region in 1980. To distinguish productivity, we classify regions as high
(low) productive if their productivity level in 1980 is above (below) the median.
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Table C.13: Adjustments to software and database exposure during SDB investment cycles by cluster:
OLS results

OLS regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2000 2000-2005 2005-2008 2008-2014 2014-2017
[A] Employment (in percent)
SDB Exposure −0.02 0.13∗ 0.12∗∗ −0.03 0.22∗∗

(0.12) (0.07) (0.06) (0.12) (0.09)
in Agriculture 0.36 0.08 0.14 −0.32 0.72∗∗∗

(0.25) (0.16) (0.15) (0.30) (0.19)
in Industry −0.24∗ 0.11 0.01 −0.18 0.03

(0.15) (0.10) (0.07) (0.21) (0.12)
in Service −0.22 0.04 0.23∗∗ −0.14 0.37

(0.24) (0.16) (0.09) (0.20) (0.23)
in Low −0.37 0.41∗∗∗ 0.12 −0.13 0.41∗∗

(0.23) (0.11) (0.09) (0.24) (0.17)
in High 0.17 −0.20∗ 0.07 0.16 −0.14

(0.17) (0.11) (0.07) (0.11) (0.10)
[B] Employment-to-population ratio (in pp.)
SDB Exposure 0.02 0.01 0.07∗∗∗ −0.06 0.07∗∗

(0.04) (0.03) (0.02) (0.04) (0.03)
in Agriculture 0.04 0.05 0.07 −0.11 0.27∗∗∗

(0.07) (0.06) (0.06) (0.09) (0.07)
in Industry −0.06 0.01 0.01 −0.10 0.04

(0.06) (0.04) (0.03) (0.09) (0.05)
in Service 0.03 −0.06 0.16∗∗∗ −0.08 0.10

(0.10) (0.07) (0.05) (0.07) (0.07)
in Low −0.18∗∗ 0.07 0.03 −0.08 0.16∗∗∗

(0.08) (0.05) (0.04) (0.07) (0.05)
in High 0.09 −0.06 0.11∗∗∗ −0.05 −0.04

(0.06) (0.05) (0.03) (0.05) (0.04)
[C] Average wage (in percent)
SDB Exposure −0.31∗∗ −0.27∗∗∗ 0.06 0.15 0.10

(0.14) (0.09) (0.11) (0.11) (0.10)
in Agriculture −0.90∗∗∗ −0.42∗∗ 0.07 −0.03 −0.51∗∗

(0.29) (0.19) (0.21) (0.35) (0.21)
in Industry 0.19 −0.24∗∗ 0.02 0.32∗ 0.07

(0.16) (0.10) (0.17) (0.18) (0.11)
in Service −0.25 −0.21 0.06 0.06 0.59∗∗

(0.30) (0.22) (0.24) (0.18) (0.24)
in Low 0.03 −0.43∗∗∗ 0.26 0.48∗∗ 0.50∗∗∗

(0.26) (0.16) (0.19) (0.23) (0.18)
in High −0.23 0.17∗ −0.17 −0.07 0.14

(0.18) (0.10) (0.11) (0.12) (0.12)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the estimated OLS

regressions of labor outcomes on SDB exposure over the phases of the SDB’s life cycle in the different types of regions. The dependent variables
represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage (in log-difference)
during the phases of the SDB’s life cycle. SDB exposure is calculated using the shift-share method and subsequently standardized at the phase
level. Therefore, the coefficient can be interpreted as a 1-STD change in exposure to SDB in each phase. Control variables include changes in
trade exposure, final demand (both measured using shift-share), and exposure to other technologies. We cluster regions using a k-means algorithm
using the share of employment in Agriculture, Industry, and Services in each region in 1980. To distinguish productivity, we classify regions as
high (low) productive if their productivity level in 1980 is above (below) the median.
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Table C.14: Adjustments to robot exposure during robot investment cycles by cluster: results without
standardisation

IV regression - Dep. var.: annualized change in the outcome variable
Industrial Robots Robotics

1995-2002 2002-2006 2006-2013 2013-2017
[A] Employment (in percent)
ROB Exposure 1.43 −6.82∗∗∗ 8.36∗∗∗ 0.89

(1.40) (1.09) (1.33) (0.77)
in Agriculture 0.71 −6.83∗∗∗ 11.01∗∗∗ 2.09∗

(2.69) (2.41) (2.81) (1.20)
in Industry 2.98∗∗ −5.47∗∗∗ 8.11∗∗∗ −0.25

(1.47) (1.32) (1.97) (0.95)
in Service −0.83 −8.58∗∗∗ 5.57∗∗ 1.29

(3.71) (2.49) (2.73) (2.28)
in Low 2.69 −6.60∗∗ 7.84∗∗∗ −1.10

(2.19) (2.64) (2.57) (1.49)
in High 1.72 −8.77∗∗∗ 8.26∗∗∗ 0.68

(1.87) (1.21) (1.41) (0.83)
[B] Employment-to-population ratio (in pp.)
ROB Exposure 2.06∗∗∗ −1.73∗∗∗ 5.40∗∗∗ −0.47∗

(0.46) (0.39) (0.60) (0.24)
in Agriculture 1.95∗∗∗ −1.35 5.69∗∗∗ −0.08

(0.66) (0.87) (1.09) (0.38)
in Industry 2.07∗∗∗ −1.60∗∗∗ 5.66∗∗∗ −0.95∗∗

(0.58) (0.39) (1.01) (0.38)
in Service 2.29 −2.44∗∗ 5.05∗∗∗ −0.09

(1.44) (1.07) (1.48) (0.50)
in Low 2.83∗∗∗ −2.16∗∗ 5.43∗∗∗ −1.64∗∗∗

(0.66) (1.01) (1.16) (0.37)
in High 1.71∗∗ −2.13∗∗∗ 5.36∗∗∗ −0.35

(0.67) (0.50) (0.71) (0.28)
[C] Average wage (in percent)
ROB Exposure −10.81∗∗∗ −6.62∗∗∗ 0.78 3.91∗∗∗

(1.65) (1.25) (1.35) (0.74)
in Agriculture −14.60∗∗∗ −7.14∗∗∗ −3.19 2.44∗

(3.34) (2.10) (3.33) (1.44)
in Industry −5.71∗∗∗ −7.74∗∗∗ 2.43 4.56∗∗∗

(1.74) (1.39) (1.61) (0.57)
in Service −16.68∗∗∗ −7.34∗ 0.47 3.93∗

(4.41) (3.72) (3.31) (2.09)
in Low −12.22∗∗∗ −7.89∗∗ 0.08 6.50∗∗∗

(2.55) (3.34) (2.61) (1.30)
in High −8.85∗∗∗ −1.02 1.06 4.59∗∗∗

(2.13) (1.32) (1.44) (0.74)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the estimated

IV-regressions of labor outcomes on robot exposure over the phases of the robot’s life cycle in the different types of regions. The dependent
variables represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage (in
log-difference) during the phases of the robot’s life cycle. Robot exposure is calculated using the shift-share method. Control variables
include changes in trade exposure, final demand (both measured using shift-share), and exposure to other technologies. We cluster regions
using a k-means algorithm using the share of employment in Agriculture, Industry, and Services in each region in 1980. To distinguish
productivity, we classify regions as high (low) productive if their productivity level in 1980 is above (below) the median.
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Table C.15: Adjustments to communication technology exposure during CT investment cycles by cluster:
results without standardisation

IV regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2001 2001-2005 2005-2011 2011-2014 2014-2017
[A] Employment (in percent)
CT Exposure −6.60∗∗∗ −6.45∗∗ −2.59 −6.23∗∗∗ −0.04

(2.07) (2.67) (2.26) (1.64) (1.55)
in Agriculture −10.89∗∗∗ 1.56 −0.71 −10.82∗∗∗ −0.84

(3.86) (6.42) (6.15) (2.80) (2.44)
in Industry −1.31 −3.62 2.65 −2.82 2.38

(2.33) (3.67) (4.58) (1.84) (2.32)
in Service −11.75∗∗ −9.59∗ −5.81∗ −5.75 −1.21

(4.49) (5.44) (3.38) (3.61) (3.47)
in Low −5.50∗ −11.66∗∗∗ −4.11 −15.97∗∗∗ 13.20∗∗∗

(3.20) (3.47) (3.01) (3.69) (3.63)
in High −5.21∗ 0.18 −2.77 0.09 −5.34∗∗∗

(2.77) (4.72) (4.57) (1.38) (1.81)
[B] Employment-to-population ratio (in pp.)
CT Exposure −1.15 −0.14 −0.33 −2.69∗∗∗ −0.49

(0.72) (1.07) (1.29) (0.48) (0.55)
in Agriculture −1.18 1.17 1.29 −3.23∗∗∗ 0.36

(1.01) (2.53) (2.95) (0.87) (0.85)
in Industry −0.44 −0.15 3.90 −1.70∗∗∗ 0.36

(0.94) (1.25) (2.86) (0.64) (0.91)
in Service −3.05 −0.00 −0.93 −2.79∗∗∗ −1.15

(1.83) (2.61) (2.33) (1.00) (0.98)
in Low 0.48 −1.15 −0.93 −5.22∗∗∗ 4.73∗∗∗

(1.02) (1.38) (1.84) (1.04) (1.10)
in High −1.50 1.48 −1.05 −1.10∗∗ −2.07∗∗∗

(1.05) (2.17) (2.40) (0.48) (0.66)
[C] Average wage (in percent)
CT Exposure 4.84∗∗ 29.14∗∗∗ −2.20 1.73 −1.35

(2.27) (3.17) (2.32) (1.99) (1.69)
in Agriculture 6.33 26.75∗∗∗ 4.40 −0.02 1.79

(4.18) (7.15) (6.24) (5.33) (2.69)
in Industry 6.53∗∗ 35.43∗∗∗ −7.95∗∗ 1.67 −1.65

(2.69) (3.85) (3.22) (2.61) (2.05)
in Service 4.91 12.93∗ −7.98 −0.50 −9.08∗∗

(5.27) (7.62) (5.21) (3.35) (3.38)
in Low 4.17 31.98∗∗∗ −3.08 2.79 −17.71∗∗∗

(3.52) (4.98) (3.55) (3.60) (3.97)
in High 3.87 6.87 −2.19 −2.16 1.24

(2.89) (4.14) (3.40) (2.68) (2.02)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the estimated

IV-regressions of labor outcomes on CT exposure over the phases of the CT’s life cycle in the different types of regions. The dependent variables
represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage (in log-difference)
during the phases of the CT’s life cycle. CT exposure is calculated using the shift-share method. Control variables include changes in trade
exposure, final demand (both measured using shift-share), and exposure to other technologies. We cluster regions using a k-means algorithm using
the share of employment in Agriculture, Industry, and Services in each region in 1980. To distinguish productivity, we classify regions as high
(low) productive if their productivity level in 1980 is above (below) the median.
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Table C.16: Adjustments to information technology exposure during IT investment cycles by cluster:
results without standardisation

IV regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2001 2001-2004 2004-2008 2008-2014 2014-2017
[A] Employment (in percent)
IT Exposure 3.29 −15.73∗∗∗ 2.20 −4.89∗∗ −2.46∗

(3.17) (3.72) (1.38) (2.10) (1.44)
in Agriculture 6.29 −11.23 5.51∗ −1.70 −6.31∗∗

(7.15) (8.72) (3.13) (3.77) (2.69)
in Industry 4.42 −11.41∗∗ 3.07∗ −4.27 −1.82

(3.21) (4.45) (1.77) (2.56) (1.76)
in Service −5.48 −28.23∗∗∗ −5.53∗∗ −2.56 −1.90

(7.28) (8.78) (2.56) (4.01) (3.78)
in Low −10.18 −17.51∗∗ −2.23 1.83 −15.18∗∗∗

(6.84) (7.69) (2.55) (5.36) (4.76)
in High 8.83∗∗ −9.62∗∗ 6.03∗∗∗ −9.36∗∗∗ 0.74

(3.41) (3.72) (1.38) (1.69) (1.41)
[B] Employment-to-population ratio (in pp.)
IT Exposure 2.11∗ −5.04∗∗∗ 1.46∗∗∗ −2.74∗∗∗ −1.32∗∗

(1.10) (1.60) (0.49) (0.71) (0.51)
in Agriculture 0.19 −3.15 1.43 −2.09∗ −3.45∗∗∗

(1.88) (3.37) (1.12) (1.14) (0.94)
in Industry 1.69 −4.81∗∗∗ 1.95∗∗∗ −2.60∗∗ −1.19∗

(1.30) (1.59) (0.67) (1.04) (0.69)
in Service 1.26 −9.82∗∗ −1.09 −2.02 −0.81

(2.97) (4.50) (1.04) (1.50) (1.07)
in Low −0.74 −0.77 0.99 0.36 −9.48∗∗∗

(2.19) (3.25) (0.92) (1.71) (1.44)
in High 3.12∗∗ −4.67∗∗ 1.84∗∗∗ −3.52∗∗∗ 0.03

(1.29) (1.77) (0.57) (0.72) (0.51)
[C] Average wage (in percent)
IT Exposure 1.00 −0.23 1.92 2.35 −1.95

(3.47) (4.67) (1.96) (1.90) (1.57)
in Agriculture −1.37 8.05 4.24 3.20 2.71

(7.75) (12.17) (3.46) (4.52) (2.96)
in Industry 9.43∗∗ −7.09 3.29 0.47 −1.21

(3.70) (5.11) (2.90) (2.30) (1.56)
in Service −4.41 −2.97 −1.21 3.08 −6.02

(8.55) (11.09) (5.33) (3.53) (3.68)
in Low 7.85 6.17 −1.54 12.25∗∗ −0.35

(7.53) (11.70) (3.78) (4.88) (5.21)
in High 2.18 0.81 3.35∗ 0.55 −1.45

(3.56) (2.86) (1.84) (1.98) (1.58)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the estimated

IV-regressions of labor outcomes on IT exposure over the phases of the IT’s life cycle in the different types of regions. The dependent variables
represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage (in log-difference) during
the phases of the IT’s life cycle. IT exposure is calculated using the shift-share method. Control variables include changes in trade exposure, final
demand (both measured using shift-share), and exposure to other technologies. We cluster regions using a k-means algorithm using the share of
employment in Agriculture, Industry, and Services in each region in 1980. To distinguish productivity, we classify regions as high (low) productive
if their productivity level in 1980 is above (below) the median.
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Table C.17: Adjustments to software and database exposure during SDB investment cycles by cluster:
results without standardisation

IV regression - Dep. var.: annualized change in the outcome variable
Web 1.0 GUI - CC Big Data - AI

1995-2000 2000-2005 2005-2008 2008-2014 2014-2017
[A] Employment (in percent)
SDB Exposure −0.99 1.58 0.63∗ 0.16 1.80∗∗

(1.36) (0.98) (0.38) (1.60) (0.70)
in Agriculture 3.26 1.11 0.80 −1.95 4.88∗∗∗

(2.61) (2.04) (0.93) (3.04) (1.29)
in Industry −3.37∗∗ 0.56 0.12 −4.24∗ 0.35

(1.62) (1.38) (0.45) (2.25) (0.93)
in Service −2.06 2.60 1.71∗∗ 0.81 2.75

(2.76) (2.01) (0.64) (3.40) (1.76)
in Low −3.37 5.23∗∗∗ 0.77 1.50 2.86∗∗

(2.28) (1.60) (0.58) (3.12) (1.25)
in High 0.92 −3.01∗∗ 0.22 2.19 −0.66

(2.13) (1.51) (0.49) (1.38) (0.78)
[B] Employment-to-population ratio (in pp.)
SDB Exposure −0.15 0.27 0.38∗∗ −1.15∗∗ 0.54∗∗

(0.49) (0.39) (0.17) (0.54) (0.25)
in Agriculture 0.29 0.90 0.38 −1.40 1.86∗∗∗

(0.70) (0.80) (0.34) (0.92) (0.45)
in Industry −0.96 −0.12 0.12 −2.44∗∗∗ 0.29

(0.65) (0.47) (0.23) (0.91) (0.37)
in Service −0.01 −0.03 1.05∗∗∗ −1.11 0.74

(1.14) (0.97) (0.34) (1.27) (0.50)
in Low −1.98∗∗ 1.32∗ 0.14 −1.02 1.09∗∗∗

(0.76) (0.67) (0.27) (0.99) (0.38)
in High 0.76 −0.86 0.60∗∗∗ −1.09∗ −0.26

(0.81) (0.65) (0.21) (0.59) (0.28)
[C] Average wage (in percent)
SDB Exposure −2.56∗ −3.06∗∗∗ 0.46 1.41 0.98

(1.54) (1.07) (0.73) (1.44) (0.76)
in Agriculture −9.26∗∗∗ −3.76∗ 0.93 −1.47 −3.51∗∗

(3.00) (2.18) (1.26) (3.64) (1.42)
in Industry 3.39∗ −2.76∗∗ −0.03 0.47 0.32

(1.78) (1.11) (1.12) (2.02) (0.82)
in Service −2.26 −3.90 0.51 4.73 6.05∗∗∗

(3.62) (2.70) (1.70) (2.99) (1.71)
in Low 0.86 −4.40∗∗ 2.05∗ 2.33 4.27∗∗∗

(2.55) (2.08) (1.23) (2.84) (1.36)
in High −2.72 2.64∗∗ −1.03 0.22 1.02

(2.23) (1.23) (0.72) (1.62) (0.87)
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the coefficients from the estimated

IV-regressions of labor outcomes on SDB exposure over the phases of the SDB’s life cycle in the different types of regions. The dependent variables
represent the annual change in regional employment (in log-difference), employment-to-population ratio, and average wage (in log-difference)
during the phases of the SDB’s life cycle. SDB exposure is calculated using the shift-share. Control variables include changes in trade exposure,
final demand (both measured using shift-share), and exposure to other technologies. We cluster regions using a k-means algorithm using the
share of employment in Agriculture, Industry, and Services in each region in 1980. To distinguish productivity, we classify regions as high (low)
productive if their productivity level in 1980 is above (below) the median.
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D Additional Figures

Figure D.1 shows the geographical distribution of regions according to our clustering strategy.

Figure D.1: Clusters of regions according to productive specialization

Notes: This figure presents the geographical distribution of the clusters. We compute the clusters by using a K-means algorithm.
The variables employed for the clustering are the shares of employment in agriculture, industry, and services in 1980. We
standardize the variables at the country level. The data on employment comes from the ARDECO database.
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Figure D.2: Measures of goodness-of-fit

Notes: This figure presents the goodness-of-fit for a great number of clusters going from 1 to 15. We use three indicators to
assess the goodness-of-fit: the Within-cluster Sum of Squares (WSS), the Akaike Information Criterion (AIC), and the Bayesian
Information Criterion (BIC).

Figure D.3 shows the geographical distribution of regions according to their labor produc-
tivity level in 1980. Regions are categorized as ‘High (Low)-productivity’ if their productivity
is above (below) the median of the entire sample of regions.
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Figure D.3: Clusters of regions according to their labor productivity level

Notes: This figure presents the divide of regions according to their productivity level in 1980. We compute the clusters by using
a K-means algorithm. The variables employed for the clustering are the shares of employment in agriculture, industry, and
services in 1980. We standardize the variables at the country level. Labor productivity is estimated as the ratio between GVA
at constant prices and employment (in thousands) in 1980 for each region. For Greece and Ireland, there is no information on
GVA prior to 1995, therefore we have used this year for the computation in these two cases.
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Figure D.4: Technology exposure during robot investment cycles (First stage)

Notes: This figure presents the first-stage regressions for the technology exposure in European regions by robot investment cycles
(x-axis) instrumented with the predicted exposure in the United States over the same period (y-axis). First-stage regressions
are estimated separately for each cycle with country-fixed effects. Both exposures are computed with a shift-share using the
employment sectoral shares from European regions in 1980.
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Figure D.5: Technology exposure during communication technology investment cycles (First
stage)

Notes: This figure presents the first-stage regressions for the technology exposure in European regions by CT investment cycles
(x-axis) instrumented with the predicted exposure in the United States over the same period (y-axis). First-stage regressions
are estimated separately for each cycle with country-fixed effects. Both exposures are computed with a shift-share using the
employment sectoral shares from European regions in 1980.
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Figure D.6: Technology exposure during information technology investment cycles (First
stage)

Notes: This figure presents the first-stage regressions for the technology exposure in European regions by IT investment cycles
(x-axis) instrumented with the predicted exposure in the United States over the same period (y-axis). First-stage regressions
are estimated separately for each cycle with country-fixed effects. Both exposures are computed with a shift-share using the
employment sectoral shares from European regions in 1980.
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Figure D.7: Technology exposure during software database investment cycles (First stage)

Notes: This figure presents the first-stage regressions for the technology exposure in European regions by SDB investment cycles
(x-axis) instrumented with the predicted exposure in the United States over the same period (y-axis). First-stage regressions
are estimated separately for each cycle with country-fixed effects. Both exposures are computed with a shift-share using the
employment sectoral shares from European regions in 1980.
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D.1 Technology stock

Figure D.8 shows the evolution of the first difference in the real consumption per 1000 worker
at the EU level (aggregated for the 12 European countries in the sample). The series has
been smoothed by taking the 3-year moving average.

Figure D.9 presents the technology stocks (per thousand workers in 1980) from 1995 to
2017, expressed as an index, for robots, communication technology, information technology,
and software and databases. The first row of panels displays the raw time series, which is
increasing for all technologies. The second row of panels depicts the detrended variables,
accounting for long-term patterns in technology investment. Lastly, the third row of panels
further adjusts for the level of final demand, which could influence investment dynamics.
Consequently, this row illustrates the investment in each technology, net of long-term trends
and final demand dynamics.
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Figure D.8: Evolution of final demand. First difference (3-year moving average)

Notes: Figure D.8 shows the evolution of the difference in real consumption per 1000 workers at the European level (this is,
aggregated for the 12 European countries in the sample). The series has been smoothed by taking the 3-year moving average.
The data on consumption correspond to the final consumption expenditure of households from the OCED Input-Output Tables
(2021 edition). This series has been adjusted into real consumption figures by deflating it with the consumer price index
provided by the OECD (base year 2015=100).
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Figure D.9: Technology stocks per thousand workers in 1980

Notes: Figure D.9 shows the evolution of the technology stock per thousand workers in 1980 aggregated at the European level
(this is, aggregated for the 12 European countries in the sample). Panel ‘Raw’ refers to the series in levels, panel ‘Untrended’
displays the residuals after regressing the Raw series on a liner time trend, and panel ‘Untrended + Final demand net’ shows
the residuals after regressing the ‘Raw’ series on a liner time trend and on the real consumption (to account for business cycles).

E Technological Cycles: Summarizing Major Developments

E.1 Cycle 1.: Web 1.0 (1990–)

Table E.1 outlines the major technological developments in the early 1900s, which were
diffused during the first cycle.

Table E.1: Technologies that characterized cycle 1. 1990-2004–

Computational power 1993: Intel Pentium microprocessor (Intel)
1980s Personal computers

Network communication 1990 HTML (Tim Berners Lee, CERN)
1993 MOSAIC (Eric Bina, Marc Andreesen; University of Illinois)
2000s Diffusion of internet and digital infraestructure

Software 1990 Windows 3.0 (Microsoft)
1991 LINUX (Linus Torvalds)
1990s Diffusion of World Wide Web (WWW)

Notes: Own elaboration based on Freeman and Louçã (2001); Mowery and Simcoe (2002); and Table 4 from Nuvolari (2020)
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Advancements in mainframes and microcomputers began in the 1960s and 1970s. How-
ever, it was only with the reduction in the price and size of microprocessors that personal
computers became available for use in administrative tasks and smaller firms (Malerba et al.
1999, Freeman and Louçã 2001).28 Concurrently, the development of newer and more user-
friendly operating systems such as Windows 3.0 in 1990, the open-source operating system
Linux in 1991, and Windows 1995 further facilitated widespread adoption.

In contrast to previous decades when the Internet was confined to researchers and en-
gineers, the number of Internet hosts experienced a significant increase in the late 1990s
(Mowery and Simcoe 2002). This surge was facilitated by firms adopting computer hardware
(as mentioned above), development of the HTTP protocol and the HTML language, and the
introduction of ’browsers’ or platforms designed for reading HTML documents (Mowery and
Simcoe 2002). HTML and HTTP which were introduced in the 1990s, enabled the inclusion
of multimedia content in web pages and the possibility of cross-referencing sources, allowing
quick access to a vast number of multimedia pages. This gave rise to the WWW in 1991,
marking one of the critical developments of this first cycle. The MOSAIC and Netscape
browsers were introduced in 1993 and 1995 respectively, and simplified and standardized the
visualization of documents online.

By 2002, over 50% of firms with 10 or more employees were utilizing the Internet (Pilat
2005).29 The dramatic diffusion of the Internet changed retail dynamics and gave rise to
online commerce (Mowery and Simcoe 2002). Major online retail companies such as Ama-
zon.com and eBay, started operating in 1995. By 2001, a significant percentage of companies
in Europe were utilizing the Internet for sales or purchases (Mowery and Simcoe 2002).

The adoption of ICT triggered significant changes to firms’ organizational structures
and affected business organization, communication with customers and suppliers, and work
practices. ICT replaced various activities and particularly those more easily codified and
programmed, and created new tasks. Qualitative firm level research provides evidence of
these changes. Autor et al. (2002) offer an interesting case study of adoption of check
imaging and optical character recognition of OCR software by a U.S. bank. On the one hand,
the technology facilitated automated check reading and made electronic checks available
for all workers. This led to the reorganization of certain activities and resulted in more
specialized employment. Specifically, before the introduction of digitalization, in 1994 an
activity such as check exception examination involved around 650 clerks. Since there was
a requirement for a physical check, one worker oversaw the entire process per check. After

28In the U.S., private fixed investment in IT grew by around 98% between 1970 and 1999 (Mowery and
Simcoe 2002).

29The percentage varies by country, with Japan and the Scandinavian countries leading adoption, with
almost all firms using the Internet.
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adoption of OCR software checks were accessible electronically and could be accessed by
multiple workers simultaneously which resulted in a break down into more specialized tasks
related to processing overdrafts, implementing stop payment orders, and verifying signatures
(Autor et al. 2002).

E.2 Cycle 2.: Graphical User Interface and Cloud Computing (2004–)

Table E.2 summarizes the major technological developments in the Graphical User Interface
and Cloud Computing cycle.

Table E.2: Technologies that characterized cycle 2. 2004–

Communication Web 2.0 2004 Flickr developed it’s own API
Software 2006 Facebook and Twitter introduced their own API

2014 Apache Flink is introduced in Apache
2008 AppStore
2012 Google Play

Hardware Cloud Computing 2006 Elastic Compute Cloud Commercial Services (EC2), GoogleDocs
2010 Microsoft and other companies provide private CC services

Notes: Own elaboration based on Lane (2019)

Gradually, developments in the internet led to a newer phase known as ’Web 2.0.’ There
is no precise definition of Web 2.0, rather it is described in terms of the dimensions it
encompasses. These dimensions include technological aspects such as AJAX, RIA, and
XML/DHTML, principles such as participation, collective intelligence, and a rich user expe-
rience, and applications and tools such as Wikipedia, Flickr, and Mashups (Kim et al. 2009).
This phase is distinguished by perception of the Internet as a collaborative platform where
users can contribute actively to the development and improvement of applications. During
this period, social media platforms developed their own APIs to become the primary chan-
nels connecting individuals (Lane 2019). This facilitated the creation of new applications
and services which were integrated seamlessly with social media platforms.30

Another notable feature of this phase is the increasing data intensity of applications,
where improvement of these applications is also related to the number of users (O’Reilly
2007). Companies are building on the huge amounts of data flowing through social media
platforms which are allowing them to tailor their advertising based on consumer preferences.
Data analytics has shifted from reliance on structured data to reliance on unstructured data
based on natural processing methods (Lee 2017). Cloud computing became more widespread
in the 2000s and in 2006, Amazon introduced its Elastic Compute Cloud or EC2 commer-
cial service for businesses. The less popular private clouds were available in 2008 and in

30In 2007, Apple initiated the ’App Revolution’ by launching its software development kit for third parties.
Developers were able to create apps accessible using an on any iPhone. The Apple App Store was launched
in 2008 and was followed in 2012 by the introduction of Google Play (Crook 2018).
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2010, Microsoft and other companies launched their own more accessible, user-friendly, and
affordable cloud computing services (Foote 2021).

According to Eurostat, by 2021 around 40% of EU enterprises were using cloud computing
services although to varying intensity across countries.31

Increasing investment in cloud computing services suggests a negative association with
IT capital and software investment. Firms’ fixed capital in IT tends to decrease, while these
services enabled the growth of start-ups and small and medium sized firms (Bloom and
Pierri 2018, DeStefano et al. 2023). This outcome appears to be driven by the lower costs
of cloud services compared to the high fixed costs of investments in ICT which represent a
substantial entry barrier for new firms (Etro 2009). The creation of more smaller firms has
consequences for employment. Since small and medium sized firms tend to be associated
with high employment growth, their emergence enabled by cloud computing services is having
positive effects on employment (Etro 2009, Bloom and Pierri 2018).

E.3 Cycle 3.: Big Data & Artificial Intelligence (2013–)

Table E.3 presents the major advances in the ongoing Big Data & Artificial Intelligence
cycle.

Table E.3: Technologies that characterized cycle 3. 2013–

Communication Internet of Things 2013 IoT becomes more widespread due to hardware platforms
Hardware 2016 IoT products widely available in the market
Software Big Data & Data analytics 2013 Hadoop 2.0, Apache spark, Apache Storm, Apache Samza are introduced

2014 Apache Flink is introduced in Apache
2015 Apache Apex Is introduced in Apache
2016 Zettabyte era begins

Software Artificial intelligence 2014 VVGNet, GAN and GoogleNet
(ML & DL algorithms) 2015 ResNet

2016 DenseNet
2017 WGAN

Notes: Own elaboration based on Barnett (2016); Gupta and Rani (2019); Khanna and Kaur (2020); Cao et al. (2018)

The spread of the IoT as a set of technologies enabling physical objects equipped with
sensors to communicate and share data with computing systems through wired or wireless
networks, without the need for human mediation is changing the way data is collected,
shared, and transferred between objects (Lee 2017).32 The IoT in conjunction with social
media websites is becoming another significant source of data generation, including images,
videos, and audio (Lee 2017). The technology is pervasive in a range of sectors including

31Over 60% of enterprises in Sweden, Finland, the Netherlands and Denmark use cloud computing. For
detailed figures see EUROSTAT website.

32Objects are connected to the Internet and to each other through technologies such as Wireless Sensor
Networks (WSN), Radio-frequency identification (RFID), Bluetooth, Near-field communication (NFC), Long
Term Evolution (LTE), among others. This connectivity allows data to be collected, shared, and transferred
between objects (Khanna and Kaur 2020).
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aerospace and defense, agroindustry and precision agriculture, automotives, pharmaceuticals,
consumer goods, chemicals, and ICT (Andreoni et al. 2021).33

Based on the widespread internet penetration in the previous period, big data and data
analytics have experienced a significant surge. For instance, Gupta and Rani (2019) demon-
strates that research publications associated with big data in 2017 had increased by 126 fold
compared to 2011. This coincided with the creation of several big data processing platforms
which became widely available in 2013 through incorporation into Apache Gupta and Rani
2019.34 According to Gupta and Rani (2019), Apache Spark is one of the most popular
systems for large-scale data processing and outperforms Hadoop (another Apache system)
by working faster and utilizing in-memory processing rather than a file system (IBMCloud-
Education 2021). Other platforms capable of real-time analytics and processing released in
this period include Apache Storm and Apache Samza which are used to cybersecurity and
threat detection, and performance monitoring, among other applications (Gupta and Rani
2019).35 Overall, the compound annual growth of social media analytics is projected to be
27.6% between 2015 and 2020 (Lee 2017).

AI is attracting increased attention. AI is generally understood as a subset of computer
science designed to train machines to perform cognitive activities associated to human intel-
ligence such as learning, problem-solving, and interaction (Brynjolfsson and McAfee 2014,
Baruffaldi et al. 2020). The major components of AI are machine learning and deep learning,
both of which rely on the development of neural network techniques.

The ability of AI to perform various functions is leading to its application in several
industries (Cockburn et al. 2018) to perform activities such as visual and speech recogni-
tion, predictive analysis, machine translation, information extraction, and system manage-
ment/control (Vannuccini and Prytkova 2023, Calvino et al. 2022).

The main distinction between machine learning and information and communication
technology (ICT) lies in the fact that while computerization allowed the codification of pre-
existing knowledge, primarily related to repetitive activities, machine learning empowers the
machine to learn from examples to achieve a specific output (Brynjolfsson and Mcafee 2017).
This process is rooted in supervised learning systems, where a machine is trained to predict a
particular result based on a diverse range of inputs provided by large databases. Notably, the
progress in machine learning is intricately tied to big data,36 and a pivotal development in

33For a comprehensive review of IoT uses in different sectors seeAndreoni et al. (2021).
34The Apache Software Foundation (ASF) is a non-profit organization that provides open-source software.
35There is a strong link between the big data and AI and Web 2.0 life cycle, which has to do with the fact

that these platforms were developed by social media companies, e.g. BackType which developed Apache
Storm and LinkedIn which developed Apache Samza.

36Simultaneously, for big data analytics to evolve, machine learning is a key element. This underscores
the high degree of interdependence between these sets of technologies.
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the early 21st century has been the creation of new algorithmic techniques. These techniques
enhance predictive power by utilizing backpropagation with multiple layers, in conjunction
with vast datasets (Cockburn et al. 2018). Some examples of current applications are, for
instance, in the medicine field, where machines now make disease diagnoses with higher
accuracy than humans (Frey and Osborne 2017). Another application is in legal activities,
where computers scan and process a wide range of legal documents necessary for a trial
or pre-trial procedure (Frey and Osborne 2017). These examples highlight that artificial
intelligence is capable of handling cognitive non-routine activities.

Overall, the adoption of AI among firms remains relatively low. Between 2016 and 2018,
the percentage of firms using or testing AI in the U.S. was reported to be 3.2% (Acemoglu
et al. 2022). Furthermore, research indicates that adoption tends to be more prevalent among
larger and older firms (Zolas et al. 2021, Acemoglu et al. 2022).
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