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include views on policy, but the institute itself takes no institutional policy 
positions. 
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Highlights 
 

• Randomised controlled trials are widely used in education research to quantify 

the impact of programmes and interventions. ‘Warehouses’ and ‘toolkits’ 

summarising promising approaches are based on findings from such trials. 

• It is increasingly recognized that many trials in education have low power to 

detect an effect. However, it is less well known that low powered trials tend to 

systematically exaggerate effect sizes among the subset of interventions that 

show promising results. 

• Across 23 trials deemed to have shown promising findings, we estimate that 

effect sizes are exaggerated by an average of 52%, or more. 

• Trial commissioners can mitigate this problem by increasing the power of the 

trials that are commissioned. Analysts can guard against this problem by 

including estimates of the exaggeration ratio when reporting trial findings. 

  

 

Why does this matter?  

Randomised controlled trials are one important way 

in which we attempt to discover ‘what works’ in 

education. Ensuring that such trials provide reliable 

findings is therefore central to the drive for 

evidence-based education. 
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1. Introduction 

Randomized controlled trials (RCTs) have proliferated in education research in recent years 

(Connolly, Keenan, & Urbanska, 2018). Funders are attracted to descriptions of a ‘gold standard’ 

research design (Pocock, 1978), policy makers have emphasized the importance of subjecting 

educators’ views to rigorous tests (e.g. Haynes, Service, Goldacre, & Torgerson, 2012), and 

researchers are drawn to an unbiased estimator for the causal impact of interventions (e.g. Torgerson 

& Torgerson, 2001). In England, this approach has been institutionalized through the creation of the 

publicly-funded Education Endowment Foundation (EEF), which has now completed over 100 RCTs 

(Dawson, Yeomans, & Brown, 2018). In the US, the Every Student Succeeds Act privileges RCTs as 

providing ‘Tier I’ evidence and the Institute of Education Science has now commissioned over 350 

RCTs (Hedges & Schauer, 2018). 

Despite the increasing popularity of RCTs in education - and the gradual accumulation of both null 

and positive results - an awareness of their limitations is growing. For example, researchers have 

shown that many education trials have statistical power well below 80% to detect effects of the 

magnitudes commonly found in the education literature (Cheung & Slavin, 2016; Spybrook, Shi, & 

Kelcey, 2016; Torgerson, Torgerson, Birks & Porthouse, 2005). This leads to trials that neither 

provide good evidence in support of an effect, nor evidence that there is no effect. Indeed, Lortie-

Forgues & Inglis (2019) estimate that 40% of education RCTs are uninformative with respect to 

impact. 

We address a related limitation of RCTs in education. Rather than focusing on when trials do not 

provide any evidence one way or another, we focus instead on when trials conclude that there is an 

effect of a given magnitude, but this finding is erroneous. More specifically, we ask: when a 

researcher concludes from an education RCT that an intervention does indeed have an effect, to what 

extent is the estimated effect an exaggeration of the true impact (Type-M, or magnitude error)? And 

how likely is the true effect to be in the other (negative) direction (Type-S, or sign error)? (Gelman & 

Carlin, 2014). Despite RCTs providing an unbiased estimator in general, we find that estimates from 
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education RCTs deemed to show promising results display surprisingly high levels of Type M error. 

By contrast, we find that Type S errors are unlikely in such trials. 

It should be noted that the Type M error we identify is not the familiar random (mean zero) error that 

is inherent to all RCTs. Rather, this error constitutes systematic upward bias of effect sizes among 

trials that find statistically significant results. We therefore refer to it as promising trials bias. Given 

that this results from conditioning the set of trials under consideration on their p values, it can be 

thought of as the study-level analogue of survivor bias - when differential dropout of observations 

renders a sample unrepresentative of the population of interest. Analogously, while in general RCTs 

have mean zero error, the set of trials that identify statistically significant results are no longer 

representative of RCTs in general, and tend to overestimate effect sizes. This leads to ‘warehouses’ or 

‘toolkits’ listing promising education interventions to contain inflated effect size estimates and means 

that promising trials are less likely to replicate. Indeed, we estimate that some of the interventions 

listed in such warehouses have a non-trivial probability of having a true effect size of zero. 

This research is closely related to several strands of the recent academic literature. In particular, it 

builds on work by Gelman and Tuerlinckx (2000), Gelman and Carlin (2014) and Colquhoun (2019) 

concerned with the lack of information often conveyed by RCTs, even when p<0.05. We apply this 

thinking to the education setting, using empirical data to quantify the extent of this problem for the 

field. In that sense, our research is analogous to work by Button et al. (2013) in neuroscience. By 

estimating the extent to which an identical study of an apparently promising intervention would 

produce a different result, our analysis is also relevant to recent work on the relationship between p 

values and replicability of research (Anderson, 2020; Colquhoun, 2017; Makel & Plucker, 2014; 

Vasishtha, Mertzena, Jäger, & Gelman, 2018). Our suggestions for using external information (or 

priors) to interpret the results from education trials are also related to those recently made by Deke 

and Finucane (2019). 

In Section 2 of the paper, we begin by setting out a conceptual framework for understanding 

erroneous findings in RCTs, grounded in potential outcomes notation (Rubin, 1974) and an adapted 

version of the diagrams developed by Gelman & Tuerlinckx (2000). Then in Section 3, we set out our 
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empirical approach to estimating the probability and severity of erroneous findings, paying particular 

attention to our use and selection of priors. In Section 4,  we report our estimates of Type M and Type 

S errors in 23 ‘promising’ RCTs (deemed to have provided evidence of efficacy) and in Section 5 we 

extend the analysis to the special case of Type M error in which the true effect is zero i.e. a false 

positive (Colquhoun, 2019). Finally, in Section 6, we conclude with a discussion of the implications 

of our findings for the design, analysis, interpretation, and commissioning of RCTs in education 

research. 

2. Conceptualising erroneous findings in trials 

2.1 Erroneous findings and potential outcomes 

To bring clarity to the idea of erroneous findings, it is helpful to briefly restate the basis on which we 

would expect to obtain unbiased causal estimates of impact from randomized controlled trials. 

Individuals (i = 1, …, N) may be exposed to a policy or programme (𝑇𝑖 = 1) and have two potential 

outcomes, one which would be observed if they were exposed 𝑌1𝑖  to the treatment and one if they 

were not exposed to the treatment 𝑌0𝑖. To quantify the effect of the intervention, we would like to 

calculate the average treatment effect, D: 

𝐷 =
1

𝑁
∑(𝑌1𝑖 − 𝑌0𝑖)

𝑁

𝑖=1

(1) 

However, we can never observe both 𝑌1𝑖 and 𝑌0𝑖 for a given individual, i (Holland, 1986). 

Nevertheless, with random assignment of individuals to treatment and control in an RCT, the law of 

large numbers ensures that individuals assigned to the treatment group and individuals assigned to the 

control group have identical potential outcomes in expectation: 

𝐸(𝑌0𝑖|𝑇𝑖 = 1) = 𝐸(𝑌0𝑖|𝑇𝑖 = 0) (2) 

 

𝐸(𝑌1𝑖|𝑇𝑖 = 0) = 𝐸(𝑌1𝑖|𝑇𝑖 = 1) (3) 

In each case, the terms on the left-hand side containing counterfactuals are now equivalent to the  

terms on right hand side containing observable quantities. This allows us to re-express our estimand in 



8 

 

(1) without the use of counterfactuals. We emphasise this henceforth by using the 𝑌𝑜𝑏𝑠 term to denote 

the observed outcomes in a particular group: 

𝐷 =  𝐸(𝑌𝑜𝑏𝑠
𝑖|𝑇𝑖 = 1) −  𝐸(𝑌𝑜𝑏𝑠

𝑖|𝑇𝑖 = 0) (4) 

It should be noted, however, that while 2) and 3) are true in expectation (across many hypothetical 

repetitions of the random allocation process), once random allocation has occurred in a given trial we 

observe the mean of Y in our data, rather than it’s expectation. In practice, we therefore employ the 

following estimator: 

�̂� = (𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ |𝑇𝑖 = 1) − (𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ |𝑇𝑖 = 0) (5) 

where �̅� is the mean of 𝑌𝑖 for all 𝑖s. However, while 𝐸(�̂�) = 𝐷 across many trials, due to sampling 

variation, in a given trial it is very likely that: 

𝐸(𝑌0𝑖|𝑇𝑖 = 1) ≠ (𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ |𝑇𝑖 = 0) (6) 

and 

𝐸(𝑌1𝑖|𝑇𝑖 = 0) ≠ (𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ |𝑇𝑖 = 1) (7) 

In which case: 

 
1

𝑁
∑ (𝑌1𝑖 − 𝑌0𝑖) ≠ (𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ |𝑇𝑖 = 1) − (𝑌𝑜𝑏𝑠̅̅ ̅̅ ̅̅ |𝑇𝑖 = 0)

𝑁

𝑖=1
(8) 

and, equivalently: 

𝐷 ≠ �̂� (9) 

 

The inequality between D and �̂� in individual RCTs is the main focus of this paper. More specifically, 

we study two different types of D ≠ �̂�. First, Type M [magnitude] error, which can now be defined as 

cases in which D ≠ �̂� and �̂� has a p < 𝛼. The magnitude of Type M error (also known as the 

exaggeration ratio) is equivalent to �̂�/𝐷. Second, Type S [sign] error, which is present in all cases in 

which (�̂� > 0 & D < 0) or  (�̂� < 0 & 𝐷 > 0) and �̂� has p < 𝛼. In an extension to our main analysis, 

we also look at the probability of false positives, which can be seen as a special case of Type M error 

in which 𝐷 = 0. 
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2.2 Graphical representation of erroneous findings 

The distinction between these types of error can be further clarified visually by extending the diagram 

originally used by Gelman & Tuerlinckx (2000) to illustrate Type S error. Figure 1 shows a 

hypothetical, purely illustrative plot of D and �̂� across many perfectly implemented RCTs of different 

interventions which, for simplicity, have been assumed to have identical standard errors. Points within 

the dotted lines indicate estimates that are not significantly different from zero, points outside the 

dotted lines indicate estimates that are. The trials in black might be considered to be ‘promising’ in 

that they have �̂� > 0 and p < 𝛼. By construction, all of the trials represented by black dots display 

some degree of Type M error, since all of them have p < 𝛼 and none of them fall on the 45-degree line 

on which D = �̂�. The trial with the highest value of �̂� shows Type M error of magnitude A/B, since 

D = 𝐵,  �̂� = 𝐴 and p < 𝛼. The trial labelled D is a case of Type S error in that 𝐷 > 0 (x axis) but �̂� <

0 (y axis) and p < 𝛼. The trial labelled C is a false positive, since 𝐷 = 0, �̂� > 0 and p < 𝛼. 

Figure 1: Illustrating Type M, false positive and Type S errors in trials 
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2.3 Erroneous findings, statistical power and the statistical significance filter 

The prior subsections illustrate how impact estimates from specific RCTs will in general diverge from 

the true effect, given finite sample size. This is not particularly problematic in and of itself since these 

errors have a mean of zero across trials. Statistical inference therefore helps to account for the random 

error inherent to trials. However, our focus in this paper is on a specific subset of RCTs: those that 

have been deemed to show evidence of impact based on p < 𝛼. Amongst this group of trials, we 

would expect Type M errors to systematically inflate effect sizes, particularly when those studies have 

lower power (Ioannidis, 2008; Gelman & Carlin, 2014). To see why, consider that when 𝛼 = 0.05 an 

estimate must be 1.96 standard errors away from zero to be declared a discovery, and the most 

exaggerated estimates are systematically more likely to clear this threshold. In effect, the requirement 

for p < 𝛼 means that, the less exaggerated a result is, the more likely it is to be filtered out from being 

a declared a discovery. 

This ‘statistical significance filter’ can also be seen in Figure 2, which shows the same set of RCT 

point estimates in both panels, but with estimates in the right-hand panel assumed to come from trials, 

with lower power and larger standard errors. This results in only one of the five point estimates with 

𝑝 < 0.05 in the left-hand panel remaining so in the right-hand panel, and this is the estimate with the 

largest Type M error. The relationship between power (or sample size) and Type M error can also be 

verified analytically using Gelman and Carlin's (2014) retrodesign() function. In sum, when trials 

have lower power, effect size estimates for promising interventions tend to be more inflated – a 

problem we refer to as promising trials bias.  

Where decisions about commissioning scale-up or replication trials are based on lower-powered 

initial trials showing promising results, promising trials bias will create difficulties with replication 

since the most exaggerated trials are also the least likely to replicate (Button et al., 2013; Vasishth et 

al., 2018). Consider, for example, the Education Endowment Foundation’s (EEF) approach to 

commissioning. They conduct initial ‘efficacy’ trials (with relatively small samples, under ideal 

conditions) and then deem a subset of these interventions to be ‘promising’ based on the results. 

Promising interventions are then often tested in subsequent ‘effectiveness’ trials (with larger samples 
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and under everyday conditions). Promising trials bias means we would expect impact estimates from 

promising efficacy trials to reduce in size in subsequent effectiveness trials due to a process of mean 

reversion. In the rest of the paper, we aim to quantify this effect. 

Figure 2: Lower powered studies inflate Type M error 

 

3. Method 

3.1 Estimating Type-M and Type-S error 

In section 2.1 we set out how RCTs provide an unbiased estimator for the causal impact of an 

intervention but, when we focus on a specific estimate from a single trial, sampling variation means 

that the estimate will very likely contain error of some magnitude. The retrospective design analysis 

(Gelman & Carlin, 2014) that we conduct here aims to move back in the other direction (from the 

specific trial to the general) by asking: for each published RCT, what results would we be likely to 

obtain under hypothetical replications of the study? Doing so requires us to adopt a probability model, 

which specifies the assumed probability that different effect sizes would be obtained in a hypothetical 

replication of the trial (𝐷𝑟𝑒𝑝). 
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The probability model for 𝐷𝑟𝑒𝑝 is defined by three quantities. The first is an assumption about the true 

effect size. This centres the probability model by determining the most likely effect size to be 

obtained in a hypothetical replication. This assumption plays a critical role in design analysis and we 

hence discuss it at some length in section 3.3. The second quantity that defines the probability model 

for 𝐷𝑟𝑒𝑝 is the standard error of the estimated effect in the original trial. This determines the 

variability in the effect sizes that would be obtained under hypothetical replications. The third 

quantity is the statistical significance threshold 𝛼, which determines the region of the probability 

model for 𝐷𝑟𝑒𝑝 that is far enough from zero that it would be declared a discovery (Gelman & 

Tuerlinckx, 2000; Gelman & Carlin, 2014). If 𝛼 = 0.05, we then estimate the expected magnitude of 

Type M error by repeatedly simulating draws from this probability model and averaging the 

differences between 𝐷 and 𝐷𝑟𝑒𝑝 for all draws of 𝐷𝑟𝑒𝑝 more than 1.96×SE way from zero. We 

estimate the probability of Type S error by calculating the proportion of the probability model that 

protrudes more than 1.96×SE in the opposite direction (+/-) to the true effect, D. In practice, we 

implement this using the R function retrodesign() (Gelman & Carlin, 2014), but note that this can also 

be done using the Stata module rdesigni (Klein, 2017). 

3.2 Sample of RCTs 

Recall that our motivation is to understand erroneous findings in trials that have been deemed to show 

promising results. Our empirical analysis therefore employs the largest set of published education 

trials that are systematically replicated when they show evidence of impact – those commissioned by 

the Education Endowment Foundation. This constitutes over 100 published trials, 23 of which have 

been deemed to show ‘promising’ results by the EEF at some point (marked with an * in the reference 

list). In cases where trials are deemed to have shown promising results, and where the intervention 

developer is happy to cooperate on further research, the EEF commissions a further trial of the 

original intervention. Of the 23 trials in our sample, 8 have so far been replicated and had their results 

published (marked with an † in the reference list). 
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The EEF maintain a list of interventions deemed to have shown promising results on their website.1 

Their most recent guidance (EEF, 2020) explicitly rejects the use of p < 0.05 as a cut-off for claiming 

a discovery, stating that they rely instead on a combination of the estimated effect size and a 

“continuous” (i.e. not dichotomized around 0.05) p value (EEF, 2020). Since our estimates of Type M 

and Type S error are a function of the 𝛼 level, this poses something of a challenge.  

Figure 3 shows a scatter plot of all first-stage EEF trials that yielded a positive effect size estimate, 

with the p value on the x axis (reversed) and the effect size on the y axis. Where trials analyze 

multiple outcomes and associated p values, we use the lowest p value. Our justification for this choice 

is that these are the only result that we know unambiguously to be deemed as ‘promising’ by the EEF. 

Triangles are those initial (or ‘efficacy’) trials for which a replication (or ‘effectiveness’) trial was 

subsequently commissioned. It is clear from the graph that there is a sharp increase in the probability 

of trials being recommissioned when the lowest p value is below 0.11 (dotted horizontal line). In 

addition, when p is less than 0.11, the probability of a trial being recommissioned seems unrelated to 

effect size. We therefore adopt 0.11 as EEF’s implicit 𝛼 in our calculation of Type M and Type S 

errors. Having said that, we acknowledge that this implicit 𝛼 is somewhat out of line with the social 

scientific literature, where p < 0.05 remains the dominant convention for rejecting the null and 

declaring a discovery. Accordingly, in Appendix Table A2, we report a parallel set of results for trials 

that reported p < 0.05 using 𝛼 = 0.05 in our calculations of Type M and Type S error. This set of 

results is more in line with what might be expected from the academic literature in general. 

  

 
1 The list can be found here. Please note that interventions are also removed from this list if subsequent trials of 

the same intervention to do not find an effect.  https://educationendowmentfoundation.org.uk/tools/promising 

https://educationendowmentfoundation.org.uk/tools/promising
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Figure 3: Scatterplot of EEF first-stage trials 

 

Notes: Vertical axis shows the lowest p value in each EEF trial and horizontal axis shows the effect size 

associated with that p value. Number of trials = 59. Triangles are trials of interventions deemed to have 

been ‘promising’ by EEF at any point. 

 

3.3. Selection and justification of priors 

As noted above, calculation of a trial’s Type M/S error relies on a prior assumption about the true 

effect size. Gelman & Carlin (2014, p. 642) recommend thinking about the true effect as “that which 

would be observed in a hypothetical infinitely large sample”. This makes sense in that, in a well-

implemented RCT, bias approaches zero as the sample grows toward infinity (Imai, King, & Stuart, 

2008). While this provides a precise way of conceptualising a prior about the true effect, it leaves 

open the question of how to determine the value of the prior in each case.  

What would constitute an ideal source of evidence for our prior assumptions about the true effect 

size? First, our prior would ideally be derived from a separate experimental study using standardized 

tests as outcome measures (similar to those used in EEF trials) or, where available, meta-analysis of 
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all relevant studies using such methods (Gelman & Carlin, 2014). Second, the external studies should 

be of a similar intervention, targeting a similar subject, in a similar age/grade (Cheung & Slavin, 

2016; Kraft, 2020). Third, the external studies should be free from publication bias (Gage, Cook, & 

Reichow, 2017). The next three paragraphs describe the three different sources we use for our priors 

and briefly discuss their strengths and weaknesses, which are also summarized in Table 1. 

Our first source of priors is a recent meta-review of 750 education RCTs that used standardized tests 

as outcome measures (Kraft, 2020). In particular, we use the median effect size for the grade of the 

pupils enrolled in each of the trials in our sample, for the subject (mathematics or English) targeted by 

the intervention (see Appendix Table B1). The strength of this source of priors is that it is summarizes 

information from a very wide range of studies and tailors these to both grade and subject for each of 

the trials in our sample. The corresponding downside is that it is potentially infected by publication 

bias. 

Our second source of priors is the National Centre for Education Evaluation (NCEE) database of 

trials. The NCEE is similar to the EEF in that it uses government funding to run RCTs of 

interventions that have previously shown promise and then publishes the results in a transparent way, 

regardless of the outcome. From this, we derived our second set of priors based on the average NCEE 

effect size in the subject area being targeted by each of the trials in our sample. In cases where the 

EEF trial targeted multiple subjects, we use the outcome associated with the lowest p value (for the 

same reasons given above). An important strength of this source is that it constitutes a highly 

analogous, out-of-sample set of trial results, which is free from publication bias and can be applied to 

all of the trials in our sample. However, while this source tailors the prior to the subject domain being 

targeted by each of the interventions in our sample trials, it does not tailor the prior to the age/grade or 

the specifics of the intervention. Nevertheless, the trials are all of interventions that have shown 

promising evidence in previous evaluations, suggesting they will be broadly comparable to those in 

EEF trials. 

Our third set of priors are specific to each EEF intervention and are derived from evaluations of 

similar interventions published in the academic literature. In order to maximize comparability of 
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effect sizes, we restrict these to evaluations using experimental designs and employing standardized 

tests as outcome measures (Gelman & Carlin, 2014; Cheung & Slavin, 2016). Where possible, we 

relied on the results of meta-analysis using these same criteria to select studies, in order to get the 

most complete picture of the existing literature. To ensure a thorough search was conducted, two team 

members independently searched for suitable studies from which to derive priors for all 23 

interventions in our sample. Using this approach, we were able to identify appropriate intervention-

specific priors for 8 of the 23 trials in our sample (the sources and justification for each of these are 

set out in Appendix A Table A1). For the other 15 trials, we could not find any suitable study for a 

similar intervention from which to derive intervention specific priors. The advantage of this final 

source of priors is that they are tailored directly to each intervention. The disadvantage is that they 

may be subject to publication bias and are not available for 15 of our 23 trials. 

▪ Table 1: Comparing the three sources of priors for the true effect size 

  Kraft NCEE Specific 

Experimental design ✓ ✓ ✓ 

Standardised tests ✓ ✓ ✓ 

Summarising multiple studies ✓ ✓ Varies 

Tailored to the subject targeted ✓ ✓ ✓ 

Tailored to pupils’ grade/year ✓ 
  

No publication bias 
 

✓ 
 

Tailored to the intervention 
  

✓ 

 

4. Results: Type M and Type S error 

In Figure 4, we present estimates of the Type M error (left panel) and Type S error (right panel) for 

each trial, for each of the three sources of priors. The white diamond indicate the mean Type M error 

reported as a ratio (left hand panel) and the mean Type S error reported as a probability (right hand 

panel). The NCEE priors yield the largest and most dispersed estimates of both types of error, 

followed by the Kraft priors and then the intervention-specific priors. This in part reflects the smaller 
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average effect sizes found in NCEE trials, which might be expected, given that they employ 

standardized test as outcome measures and publish trial findings regardless of the results. Table 2 

shows a numerical summary of the results. 

Our estimates of mean Type M error range from 1.52 (intervention specific priors) through 3.33 

(Kraft priors) up to 6.35 (NCEE priors). While these results are clearly somewhat different in 

magnitude, the findings suggest that trials show large Type M error across all three sets of 

assumptions we make about D. Even when we use our intervention specific priors - which lead to the 

smallest estimates of Type M error - we find that the effect sizes in this sample of trials are on average 

52% larger than the true effect size. Further, as Figure 4 makes clear, these means conceal wide 

variation across trials. Again, even when we use our intervention specific priors, very few individual 

trials have a Type M error estimate close to one. In Appendix Table A2, we show the equivalent 

results for the subset of trials with p < 0.05 and assuming 𝛼 = 0.05. The mean Type M error falls to 

1.20 when we use our intervention specific priors, although this is based on just four interventions. 

The mean Type M on the Kraft and NCEE assumptions fall slightly to 2.85 and 5.85, respectively. In 

sum, across all our analyses, we find consistent evidence of substantial promising trial bias in this 

sample of RCTs. 

Our estimates of mean Type S error range from 1% (intervention specific priors) through 8% (Kraft 

priors) up to 17% (NCEE priors). Whilst the latter two results arguably represent sizable probabilities 

that a positive finding in fact reflects negative impact, our intervention specific priors suggests a very 

low mean probability of Type S error. By contrast with our findings relating to Type M error then, our 

findings cannot be said to be robust to our choice of prior assumptions about D. For the Kraft and 

NCEE priors, there is again wide variation at the level of individual trials, with e.g. half of trials 

having an estimated Type S above 20% based on the NCEE priors. When we restrict the sample to 

trials with p < 0.05 and assume 𝛼 = 0.05 the mean Type S is even smaller. In sum, when an 

intervention has been tested in a trial with promising results, the probability that its true effect is in 

fact negative is low. 
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Figure 4: Type M and Type S error by source of prior 

   
Notes: Vertical axis in the left-hand panel shows the exaggeration ratio. Vertical axis in the right-hand panel 

shows the probability. Each dot is a trial. Diamonds show the mean. 

 

Table 2: Type S and Type M error estimates under different prior assumptions 

 Type M  Type S 

 Kraft NCEE Specific  Kraft NCEE Specific 

Median 2.70 5.92 1.27  0.04 0.20 <0.01 

Mean 3.33 6.35 1.52  0.08 0.17 0.01 

SD 2.25 4.81 0.63  0.09 0.11 0.01 

N (Trials) 23 23 8  23 23 8 
Notes: Using all trials ever deemed ‘promising’ by the EEF and an alpha value of 0.11. 

 

5. False positive risk 

Recall that Type M error occurs when D ≠ �̂� and �̂� has p < 𝛼. A special case of Type M error is 

when 𝐷 = 0. This is often referred to as a ‘false positive’ since the null hypothesis of no effect has 

been rejected when there is in fact no effect. In this case, the estimated effect is composed entirely of 

error. A common misconception about p values is that they give the probability that a result is in fact 

such a false positive (Greenland et al., 2016). Motivated in part by a pragmatic desire to provide a 

statistic that does what some people mistakenly think p values do, Colquhoun (2017, 2019) has 

developed a method for estimating the false positive risk for a given study. In this section, we use 
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Colquhoun’s method to quantify the probability that the exaggeration is relative to a true effect size of 

zero. It is important to note that we are calculating the False Positive Risk (for a single study) not the 

False Positive Rate (across many studies), the latter of which has been criticized for conflating power 

and sensitivity (Mayo & Morey, 2017). 

For a given trial, the probability of a false positive depends on the Bayes Factor (the ratio of how well 

the alternative and null hypotheses predict the data) and the prior odds of the intervention being 

effective (Colquhoun, 2017, 2019). Colquhoun has provided an R programme (2017) and a web-based 

application (Colquhoun & Longstaff, 2017) to calculate the False Positive Risk in simple trial designs. 

However, these do not allow for the clustered designs that are more common in education trials and 

that make up our sample of trials. We therefore set out how we have adapted the approach for cluster 

randomized trials in Appendix B. We can extract most of the quantities needed for this calculation 

from the EEF trial reports but still need to make one assumption: the prior probability that the 

intervention would be effective. Unlike our priors about the true effect size, we are not aware of any 

credible source of empirical evidence that could help us calibrate this assumption. Hence, we take an 

agnostic approach, and plot the estimated false positive risk across the full potential range (between 0 

and 1) of the prior probability of there being an effect.  

Figure 5 shows the results. The key finding is that, for the majority of trials, even small deviations 

from prior certainty that the intervention is effective lead to large increases in the false positive risk. 

An alternative way of interpreting these results is that only ten trials have an estimated false positive 

risk greater than 50% when the prior probability of effectiveness is 50%. As such, they do not have 

the evidential weight to sway somebody who was equally disposed to believe the intervention 

effective/ineffective before the trial. This is despite the fact that the results have all been deemed 

promising. At the beginning of this section, we referenced the misconception that p < 0.05 means 

there is less than a 5% risk of a false positive. A third and final way of looking at these results is then 

to note that, with a 50% assumed prior probability of effectiveness, only five trials in this sample have 

an estimated false positive risk below 5%. Indeed, across the trials, the median false positive risk with 

a 50% assumed prior probability of effectiveness is 22.8%. 
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Figure 5: False positive risk 

 

Notes: Vertical axis reports the estimated false positive risk (as a percentage) for each trial analyzed, given the 

assumed prior probability of effectiveness on the horizontal axis, which is allowed to range across the full 

probability space. All other aspects of the calculation are based on elements of trial design and results extracted 

from relevant reports on EEF website. 

 

6. Discussion 

We set out to investigate the prevalence and magnitude of promising trials bias in education RCTs. 

Even when using our intervention specific priors – which result in our lowest estimates of Type M 

error,  we find that the average promising trial in our sample exaggerates the true effect size by 52%. 

Arguably the most reasonable priors to use in such calculations are those derived from NCEE trials, 

since this constitutes a highly analogous out-of-sample benchmark, which is not affected by 

publication bias. Using the NCEE assumptions, the average trial finding in our sample exaggerates the 

true effect size by 535%. Indeed, regardless of which of the three sets of assumptions that we employ, 

it is clear that we would expect promising trials to substantially overestimate effect sizes and that 

replications of such trials would likely find substantially lower effects. Further, when we plot the 

probability of promising findings representing a false positive, we find that many do not contain 

sufficient evidential weight to convince somebody who already thought it 50% likely that the 
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intervention would work prior to the trial. These results graphically illustrate the very limited 

information contained within point estimates of ‘promising’ findings from low-powered education 

trials . 

6.1 Limitations 

These findings should, of course, be interpreted in light of the limitations of this study. Since we set 

out to make claims about the probability of hypotheses given data, it was necessary for us to invoke 

priors in our analysis. The true value of D cannot be known with certainty and our conclusions depend 

on the accuracy of the assumptions we have made. Having said that, we believe our setting is 

unusually well suited to providing good empirical benchmarks to inform these priors. First, we were 

able to draw on three different empirical sources in order to calibrate our priors. Though none of these 

is ideal (see Table 1) they collectively provide good evidence about the effect sizes that might be 

expected. Most importantly, our finding of large Type M errors is insensitive to which of the three 

priors we use. Another limitation relates to our sample. Our focus on promising trials limited us to just 

23 EEF RCTs. Future work should therefore look to expand this research, as and when more trials are 

published. 

6.2 Implications 

Given the magnitude of the Type M errors we observed across our sample of deemed-to-be-promising 

trials, it is clear that promising trials bias is an important issue for trial commissioners. We suggest 

that funders should supplement effect sizes and p values with retrospective design analyses of the sort 

conducted here when deciding whether to commission trials of previously-evaluated interventions. 

Some trials with p < .05 are very unlikely to replicate on any plausible prior and this should be taken 

into account when making commissioning decisions. In addition, funders should increase the power of 

the trials that they do commission. Funding fewer effectiveness trials that are unlikely to yield results 

consistent with promising prior efficacy trials would help to cover the costs of funding larger efficacy 

trials to begin with. 
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The findings also have implications for educators looking to understand the costs and benefits of 

different approaches. In particular, it would be prudent for them to expect smaller effects than would 

be suggested by single trial results listed in ‘warehouses’ or ‘toolkits’ of promising interventions. 

In addition, these findings have implications for researchers who design and analyze RCTs. We 

believe that researchers should consider using prospective design analysis when planning RCTs in 

education. In particular, the information regarding the potential for Type M error in trials of different 

sizes complements calculations regarding the minimum detectable effect size. Gelman and Carlin 

summarize this as moving from asking only “What is the power of a test?” to also asking “What 

might be expected to happen in [future] studies of this size?” (2014, p. 649). Trial analysts should also 

report retrospective estimates of Type M errors in order to give readers the answer to the question: 

how likely is it that an exact replication of this trial would come to a different conclusion? The two 

general sources of empirical evidence for priors that we set out in this paper provide a useful starting 

point for researchers looking to conduct either prospective or retrospective design analysis. 

Our findings also prompt two further reflections about impact evaluation more generally. First, our 

analysis raises questions about the appropriateness of elevating RCTs above other evaluation designs 

in education. RCTs sidestep the fundamental problem of causal inference at the cost of replacing it 

with the challenge of randomisation inference. In education, where effect sizes tend to be small 

(Kraft, 2020), this is problematic, since many trials end up having low power and yielding 

uninformative findings (Lortie-Forgues & Inglis, 2019). Observational evaluation designs such as 

matching and comparative interrupted time series do not constitute unbiased estimators in the way 

that RCTS do. However, empirical research shows that such non-experimental designs come close to 

reproducing those from education trials on average, without the attendant problems with power (Clair, 

Hallberg, & Cook, 2016; Cook, 2017; Weidmann & Miratrix, 2019). At the very least, this suggests 

that evidence from a range of rigorous large-scale observational evaluations should be seen as 

complementary, rather than inferior, to RCTs. 

Second, our research raises questions about the significance of implementation fidelity in challenges 

around “scaling up” interventions. Many other researchers have noticed that scale-up or effectiveness 
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trials often find smaller effects than are found in initial or efficacy trials of the same intervention (e.g., 

Protzo & Schooler, 2017). In education, researchers almost always account for this with reference to 

the difficulties of maintaining fidelity when an intervention is implemented at scale (e.g., Elmore, 

1996; Fletcher-Wood & Zuccollo, 2020; Honig, 2006). Our analysis suggests a different, or at least 

supplementary, account. In a context where initial efficacy trials tend to have low power, the 

statistical significance filters means that we would expect smaller – perhaps much smaller – effects in 

subsequent effectiveness trials, even if implementation fidelity was perfectly maintained. Thus, 

researchers cannot simply point to difficulties in implementation when scale-up trials fail to replicate 

initially promising results.  
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Appendix A 

Table A1: Intervention-specific priors for the effect size 

Subject Trial Source of prior Justification Prior 

English 

Nuffield 

Early 

Language 

Slavin, Lake, 

Chambers, Cheung, 

& Davis (2009) 

Meta-analysis of non-remedial reading programmes using RCTs or quasi-experiments using tests that are not 

tailored to the intervention. Effect size is the mean for phonological awareness interventions that (like Nuffield 

Early Language) focus on talking to support early reading development, as reported on page 1406. 

0.22 

Talk for 

Literacy 

Slavin, Lake, 

Chambers, Cheung, 

& Davis (2009) 

Meta-analysis of non-remedial reading programmes using pre-post observationally equivalent control group 

designs or RCTs and using tests that are not tailored to the intervention. Effect size is the mean for phonological 

awareness interventions that (like Talk for Literacy) focus on talking to support early reading development, as 

reported on page 1406. 

0.22 

Mathematics 

1st Class at 

Number 

See, Morris, Gorard, 

& Siddiqui (2019) 

RCT of a similar intervention providing one-to-one mathematics tutoring led by teaching assistants with 

outcomes measured using the standardised InCAS assessment. Effect size is taken from Table 6. 

0.12 

onebillion 

Outhwaite, Faulder, 

Gulliford, & 

Pitchford (2019) 

Prior RCT of the same intervention using the standardised PTM5 mathematics tests as the outcome measure. 

Effect size is from the comparison of the control group and the time-equivalent treatment group.  

0.21 

Science 
TDT 

Science 

Lynch, Hill, 

Gonzales, & Pollard 

(2019) 

Meta-analysis of experimental and quasi-experimental evaluations of professional development programmes for 

science and mathematics teachers. Effect size is calculated for an RCT using state-standardised tests, based on 

Table 3. 

0.11 

General 

Affordable 

Tuition 

Ritter, Barnett, 

Deny, & Albin 

(2009) 

Meta-analysis of RCTs of volunteer (adult non-professional) one-to-one tutoring programmes using standardised 

test outcome measures. The effect size is that for ‘global reading’ outcome measures on page 16. 

0.26 

Changing 

Mindsets 

Sisk, Burgoyne, Sun, 

Butler, & 

Macnamara (2018) 

Meta-analysis of RCTs or quasi-experimental evaluations of growth mindset interventions using academic 

achievement outcome measures. Effect size is the average from meta-analysis 2, as reported on page 565. 

0.08 

Graduate 

Coaching 

Prog. 

Ritter, Barnett, 

Deny, & Albin 

(2009) 

Meta-analysis of RCTs of volunteer (adult non-professional) one-to-one tutoring programmes using standardised 

test outcome measures. The effect size is that for ‘global reading’ outcome measures on page 16. 

0.26 
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Table A2: Summarising Type S and Type M error estimates for trials with p<0.05 

 Type M  Type S 

 Kraft NCEE Specific  Kraft NCEE Specific 

Median 1.95 5.23 1.19  <0.01 0.11 <0.01 

Mean 2.85 5.85 1.20  0.03 0.12 <0.01 

SD 1.97 3.67 0.17  0.06 0.09 <0.01 

N (Trials) 14 14 4  14 14 4 
Notes: Using all EEF trials with p<0.05 and an alpha level of 0.05. 
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Appendix B: Calculating False Positive Risk 

To calculate the false positive risk on each for each of our trials, we follow the method laid out by 

Colquhoun (2019), starting by using Bayes’ theorem to observe that: 

𝑃(𝐻1|𝑑𝑎𝑡𝑎)

𝑃(𝐻0|𝑑𝑎𝑡𝑎)
=

𝑃(𝑑𝑎𝑡𝑎|𝐻1)

𝑃(𝑑𝑎𝑡𝑎|𝐻0)
∗

𝑃(𝐻1)

𝑃(𝐻0)
 (10) 

where 𝐻0 is the null hypothesis and 𝐻1is the alternative hypothesis; in other words that the posterior 

odds of the alternative hypothesis are equal to the Bayes factor multiplied by the prior odds of the 

alternative hypothesis. By using a simple hypothesis test of the null hypothesis that 𝐻0: θ = 0 against 

the alternative hypothesis of 𝐻1: 𝜃 ≠ 0 the Bayes factor in the equation above becomes a simple 

likelihood ratio: 

𝐿10 =
𝑃(data|𝐻1)

𝑃(data|𝐻0)
 (11) 

which can be calculated, at least approximately, from information usually reported in trials i.e. the 

sample size, the p value, and the degrees of freedom of the 𝑡 test (further details below). Beyond this, 

we need only specify a simple prior probability 𝑃(𝐻1) = 1 − 𝑃(𝐻0), rather than a prior distribution, 

allowing us to simplify Equation 12 to the following: 

𝑃(𝐻1|data)

1 − 𝑃(data|𝐻1)
= 𝐿10 ∗

𝑃(𝐻1)

1 − 𝑃(𝐻1)
 (12) 

By rearranging for 𝑃(𝐻1|data) i.e. the False Positive Risk we can estimate this quantity as follows: 

𝐹𝑃𝑅 =
1

1 + 𝐿10
𝑃(𝐻1)

1 − 𝑃(𝐻1)

(13)
 

To estimate the likelihood ratio 𝐿10 we start with the trial’s reported p value and use this to calculate 

the critical value of the 𝑡 statistic for the test of the reported effect size: 

𝑡𝑐𝑟𝑖𝑡 = 𝑞𝑡 (1 −
𝑝

2
, 𝑑𝑓, 𝑛𝑐𝑝 = 0) (14) 

where 𝑞𝑡() is the inverse cumulative 𝑡 distribution, 𝑝 is the observed p value, 𝑑𝑓 is the number of 

degrees of freedom of the test, and 𝑛𝑐𝑝 is the non-centrality parameter (which is zero under the null 

hypothesis).  

We then use this to calculate the probability density under the null hypothesis: 

𝑦0 = 𝑑𝑡(𝑡𝑐𝑟𝑖𝑡 , 𝑑𝑓, 𝑛𝑐𝑝 = 0) (15) 

where 𝑑𝑡() is the probability density function of the 𝑡 distribution with 𝑑𝑓 degrees of freedom and a 

non-centrality parameter 𝑛𝑐𝑝 (again zero for the null hypothesis). 
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Likewise, the probability density under the alternative hypothesis can be calculated, although here we 

need to use a noncentral 𝑡 distribution with non-centrality parameter 𝑛𝑐𝑝 =
𝐸

𝑆𝐸
 where 𝐸 is the 

difference between means (we use the reported effect size) and 𝑆𝐸 is the standard deviation of the 

difference between means (we have to estimate this assuming independence of the samples and that 

the variance of the outcome measure, having been standardised to calculate the effect size, will be 

approximately 1 in both groups): 

𝑦0 = 𝑑𝑡(𝑡𝑐𝑟𝑖𝑡 , 𝑑𝑓, 𝑛𝑐𝑝) (16) 

Assuming the reported p values come from two-sided tests, under the null hypothesis the probability 

occurs at ±𝑡𝑐𝑟𝑖𝑡 and, as such, we calculate: 

𝐿10 =
𝑃(data|𝐻1)

𝑃(data|𝐻0)
=

𝑦1

2𝑦0

(17) 

Since we can generally recover all other quantities needed to calculate (or at least estimate) the inputs 

to equation 15 from the trial reports, we need only make one assumption: 𝑃(𝐻1) i.e. the prior 

probability that the intervention would be effective. 
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