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Highlights  
 

x PISA data is widely used as a basis for education policymaking. Yet, few 

people realise that students background characteristics are used in the 

creation of PISA scores, and why this is done. 

x This is at least partly due to the fact that the methodology used in PISA is 

complex and opaquely communicated. In this paper we first replicated how 

PISA scores are created to demonstrate this process. We then systematically 

alter how the background variables (such as student characteristics) are used 

in the computation of PISA scores to investigate how this affects the results.  

x While countries’ mean achievement is robust for the major domain, different 

specifications in how PISA scores are generated were found to lead to 

important changes for one of the minor domains (reading).  

x This sensitivity of PISA results to the precise methodology used is even more 

pronounced when we look at measures of inequality. Changes to how 

background variables are used lead to large changes in terms of how 

countries compare for educational inequality. 

x All in all, we show precise choice of the statistical model underlying the 

creation of PISA scores can make a fundamental difference to the results. We 

therefore urge the OECD to conduct and publish more sensitivity analyses 

around how the results are produced. Cross-country comparisons of 

educational inequality based upon PISA should be treated with particular 

caution. 

 

 

Why does this matter?  
PISA has been widely used to compare inequality in 

educational achievement across countries. This 
paper suggests these comparisons should be 

regarded critically. 
 



Conditioning: How background variables can 
influence PISA scores 

 

Abstract: The Programme for International Student Assessment (PISA) is an international 

large-scale assessment which examines the educational achievement of 15-year-old students 

across the world. It has long become one of the key studies for evidence-based education 

policymaking across the globe. As result, PISA results and the methodology that they are based 

on should be robust, open and transparent. Yet, PISA receives significant criticism for its 

scaling model and the opaqueness in communicating it. One particular point of concern is the 

so-called “conditioning model”, where background variables are used in the derivation of 

student achievement scores. The aim of this paper is to investigate this part of the scaling model 

and the impact it has upon the final scores. This includes varying the background variables of 

the conditioning model systematically and analysing the impact that this has on multiple 

measures. Our key finding is that the exact specification of the conditioning model matters and 

has substantial impact on average scores in some of the minor PISA domains (namely reading). 

It also has a major impact upon cross-national comparisons of educational inequality. 
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Introduction 

The Programme for International Student Assessment (PISA) is an important international study that 

compares mathematics, science and reading skills of 15-year-olds across countries. It has been 

conducted every three years since 2000, and has become the largest and most influential study of 

educational achievement across the world. After the publication of the PISA results, national and 

international stakeholders study the scores to determine who the “winners” and “losers” are, with 

reference societies (such as Finland) having emerged (Sellar & Lingard, 2013). The results from PISA 

have consequently led to governments across the world making substantial changes to their education 

system. For instance, after the “PISA shock” in Germany in 2000, major changes were made to school 

curricula (Ertl, 2006). Many other countries, such as Japan (Takayama, 2008), Denmark (Egelund, 

2008) and other European countries (Grek, 2009), have undertaken similar reforms based upon their 

PISA results. PISA has hence become a source of soft educational governance, with policymakers 

across the world keeping a close eye upon the results.   

 

Yet despite the impact PISA has had over the last two decades, it has not been without its critics. While 

some ethical concerns about the administration of PISA have been raised (e.g. Meyer, 2014), it is the 

methodology underpinning the study that has perhaps sparked the most controversy. As discussed by 

Rutkowski and Rutkowski (2016) and others (Gillis, Polesel, & Wu, 2016; S. Hopmann, Brinek, & 

Retzl, 2007) this includes issues such as sample representativeness, non-response rates, population 

coverage and cross-cultural comparability. For instance, in the case of Portugal, Freitas et al. (2016) 

found substantial differences between the target population and the sample which may have introduced 

bias into the results. Other countries, such as South Korea, England and Ireland, have also experienced 

questionable movements in PISA scores over time, potentially due to sampling issues (Eivers, 2010; 

Micklewright, Schnepf, & Skinner, 2012). Other criticisms of PISA include potential bias introduced 

by cross-national and cross-cultural differences in the translation, interpretation and understanding of 

the test questions (El Masri, Baird, & Graesser, 2016; Kankaraš & Moors, 2014). 

However, perhaps the most controversial element of PISA (and the area that has received most 

criticism) is the scaling model used (i.e. how a country’s PISA scores are derived from students’ 

responses to the test questions). This consists of two core components: An Item Response Theory (IRT) 

model and a latent regression model. Together they form the so-called conditioning model, from which 

estimates of students’ achievement in reading, mathematics and science are derived (OECD, 2014a). 

This is a complex, multi-step procedure; one which has been criticised for being opaque (Goldstein, 

2017) and is not well understood outside the psychometric community. 

This scepticism about the PISA scaling model has been shown to be warranted by some academic 

research. For instance, Wuttke (2007) has challenged the assumption that each PISA subject can be 



measured via a single unidimensional latent trait. He also questioned whether all test items really 

function the same across all populations in such a diverse sample. Fernandez-Cano (2016) questioned 

PISA’s historic use of Rasch over other possible IRT models, and the fact that certain characteristics of 

test questions (e.g. different response formats, position effects) are not accounted for. A seminal paper 

by Kreiner and Christensen (2014) made a similar criticism, providing evidence of general misfit of test 

questions within the PISA scaling model and evidence of significant differential item functioning (i.e. 

a lack of measurement invariance across countries). They consequently concluded that cross-country 

comparisons of educational achievement in PISA should be handled with great care (Kreiner & 

Christensen, 2014). Meanwhile, Rutkowski (2014) illustrated how systematic error within background 

variables could bias subpopulation estimates of students’ achievement. In contrast, Jerrim et al (2018) 

suggest that relative differences between OECD countries remain largely unchanged after a series of 

alterations to the IRT component of the PISA scaling model were made. 

However, one element of the PISA scaling model that has been subject to less scrutiny – despite it being 

the subject of quite some criticism and confusion – is the role that background information about 

students (provided within the background questionnaires) plays in the derivation of PISA scores. 

Specifically, students’ responses to questionnaire items (e.g. their socio-economic background, their 

attitudes towards school etc.) are used in conjunction with their responses to the PISA test questions to 

generate the PISA “plausible values” (the closest thing in PISA to estimates of students’ academic 

achievement). For those outside the psychometric community, the idea that such background data plays 

a role in the generation of PISA scores is difficult to understand. However, it is argued that, as PISA is 

only interested in achievement at the aggregate (e.g. country) level, and not in the achievement of 

individual pupils, then this should not bias the results. At the same time, the use of background data in 

the scaling model (in theory) brings two important advantages. First, if this is not done, then attenuation 

bias may be introduced when looking at the covariation between PISA scores and background 

characteristics (Mislevy, 1991; Mislevy, Beaton, Kaplan, & Sheehan, 1992). Second, by conditioning 

upon pupils’ background characteristics, the precision of population estimates should be enhanced (e.g. 

smaller standard errors in average PISA scores; van Rijn, 2018). On the downside, this adds substantial 

complexity to the generation of PISA scores, leading to the criticisms that it is opaque.  

While conditioning upon background characteristics is a key (if poorly understood) part of the 

production of PISA scores, relatively little existing research has been conducted on this matter (most of 

the literature cited above focuses upon the IRT part of the scaling model). For instance, do cross-country 

comparisons of PISA scores change depending upon if (and how) the conditioning model is specified? 

Does it really bring the supposed benefits that motivates its use (smaller standard errors and more 

accurate estimates of covariation with background characteristics)? Or does it simply add a great deal 

of complexity (and fuel criticisms of PISA lacking transparency) for little discernible gain?   



This paper aims to answer such questions about the so-called “conditioning model” used in PISA. It 

begins by investigating how closely the PISA plausible values can be reproduced using publicly 

available documentation about the procedures used. We then compute alternative plausible values 

(achievement estimates) using different variants of the conditioning model. Results from using the full 

conditioning model are then compared to those using only basic parts of the model, to those using no 

conditioning model at all. This, in turn, allows us to establish whether (a) cross-country comparisons of 

PISA scores change depending upon the conditioning model used and (b) whether the theoretical 

benefits of conditioning upon background data are empirically observed in this setting.  

The results from this analysis lead us to four key conclusions. First, while the publicly available 

information provided by the OECD allow close replication of the plausible values in the major domain 

(mathematics in the PISA 2012 data we use), replications for the minor domains (especially reading) 

are less successful. The OECD, consequently, need to be much more transparent about exactly how 

PISA scores (plausible values) for the minor domains have been derived – and particularly about the 

precise specification of the conditioning model. Second, while the specification of the conditioning 

model has little influence upon the PISA ranking within the major domain (mathematics), there is a big 

impact in some of the minor domains (particularly reading). In other words, different versions of the 

conditioning model can lead to rather different country-level PISA scores. Third, we find no evidence 

that population estimates (e.g. average PISA scores) become more precise (i.e. standard errors are 

smaller) when a complex conditioning model is used. Actually, the opposite holds true (standard errors 

inflate rather than deflate). Finally, there is evidence that the specification of the conditioning model 

can have substantial, but not necessarily predictable, impacts upon important measures of educational 

inequality. 

This then leads us to two key recommendations. First, as others have previously suggested, the scaling 

procedure used in PISA is not sufficiently transparent to facilitate exact replication of the results by 

independent researchers. The technical reports supplied by the OECD do not contain sufficient detail 

about the procedures used (let alone in a language suitable outside of a highly specialised field) and 

should therefore be extended. Second, the specification of the conditioning model can lead to non-trivial 

changes to average PISA scores, particularly within minor domains. Based upon this evidence, we 

conclude that the OECD should publish more sensitivity analyses around the conditioning model and 

make more detailed information about their methodology publicly available.  



Methods 

Data 

In this paper, we use PISA 2012 data to illustrate score computation in PISA. Generally, PISA aims to 

compare the mathematics, reading and science skills of 15-year-olds between countries. To achieve this 

aim, nationally representative samples of 15-year-olds who are enrolled in at least grade 7 in an 

educational institution are drawn (OECD, 2014a, p. 66). A two-stage stratified sample design is used. 

In the first stage, at least 150 schools are sampled per country with probability proportional to school 

size. Subsequently, 35 students per school are randomly sampled. In some countries, larger samples are 

drawn in order to facilitate sub-population (within-country) comparisons (OECD, 2014b, p. 256). The 

average school and student response rates after replacement are 98% and 92%, though there are 

substantial differences between countries. 

Test design 

As time is a limiting factor in educational assessment, PISA uses a rotated test design. This means that, 

in PISA 2012, students were randomly assigned to complete one of 13 different test booklets. Each of 

these booklets contained four out of 13 possible “item clusters” (groups of questions). As mathematics 

was the focus of PISA 2012, seven of the 13 item clusters were about this subject, with three of the 

clusters about science and three clusters about reading.1  Consequently, all booklets contained at least 

one mathematics item cluster, but only five of 13 booklets included questions in each of reading, 

mathematics and science. In other words, only around 40% of students answered questions in all three 

core PISA domains (OECD, 2014a, pp. 30, 31). The survey organisers therefore use complex techniques 

(item-response theory and latent regression) to impute data in domains where students have not 

answered any test questions (e.g. reading) from how they performed upon test questions in other 

domains (e.g. mathematics and science) and their background characteristics (e.g. gender, socio-

economic status, attitudes towards mathematics, enjoyment of school). See OECD (2014a, pp. 145, 

146) for further details. 

A unique feature of PISA 2012 (which did not occur in prior or subsequent PISA rounds) was that 

rotation was also used for the student background questionnaire. Specifically, there were three different 

versions of the student questionnaire, to which students were also randomly assigned. These 

questionnaires shared a common core component, while also including a rotated part that differed. 

Hence, while some information (e.g. gender, language and parental education) is available for all 

students, some other background data are only available for a subset (OECD, 2014a, p. 58). In addition 

 
1 Each cluster contained 30 minutes of test material. Two of the mathematic item clusters exist in an easy and a 
standard version (mathematics item cluster 6 and 7). Countries with a low expected performance can administer 
the easy versions instead of the standard versions. This leads to 13 booklets per country in either the easy or 
standard version with an overlap of six booklets. 



to the mandatory questionnaires and domains (student and school questionnaires and the mathematics, 

reading and science test), countries could also administer some optional elements of PISA. This 

included parental, educational career (EC) and information communication technology (ICT) 

questionnaires as well as additional assessments in digital reading, computer-based mathematics, 

financial literacy and problem solving  (OECD, 2014a, pp. 22, 259, 260; see Appendix A for details). 

The additional domains were computer-based assessment, while the core domains were paper-based. 

A summary of how PISA scale scores (plausible values) are generated 

Using students’ responses to the test questions and questionnaire items to which they were randomly 

assigned, the survey organisers follow five main steps to compute the PISA scale scores (plausible 

values) found within the publicly available PISA database (see chapter 9 and 12, especially pp. 159, 

253, 254 of OECD, 2014a). 

• First, for each core domain (reading, mathematics and science) the item difficulties are 

determined using a common sample2 via item response theory (IRT). These are then fixed for 

all later stages. 

• Second, responses to the background questionnaires are recoded for each country. These are 

then used as “conditioning variables” in subsequent steps. Further details about this part of the 

procedure will be discussed below.  

• Third, student achievement distributions are estimated. This is done separately in each country 

via a combination of item response theory (IRT) and latent regression (known in the 

psychometric literature as a “conditioning model”). In short, both students’ responses to the test 

questions and the responses provided to the background questionnaires are used to estimate 

student’s achievement in each subject. A simplified illustration of the model used can be found 

in Figure 1. However, rather than providing a single point estimate of the achievement for each 

student, a conditional achievement distribution is generated. This distribution reflects, for each 

student, the uncertainty we have in their estimated reading, science and mathematics ability. 

• Fourth, for each student, five plausible values are randomly drawn from this distribution. 

Within the literature, these are viewed as “imputations” for unobserved (latent) student 

achievement (Mislevy, 1991).  

• Finally, these plausible values are transformed by common item equating to the PISA scale. 

This final element facilitates comparisons of PISA scores over time. 

 
2 The common sample exists of 500 students from each country, expect for Liechtenstein, which were randomly 
selected (OECD, 2014a, p. 233). 



The focus of this paper is the role of the “conditioning model” (i.e. the use of school and student 

background data) detailed in the third bullet point above3.  

 

Note. Squares refer to observed variables, ovals to latent variables and circles to error terms. S.., M.., and R.. refer 
to students’ responses to PISA test questions, where i is the number of items in the domain. Curved lines 
connecting errors indicate correlated errors. 

Figure 1. A simplified illustration of the PISA scaling model used to generate the plausible 
values 

Why are background variables used within the construction of PISA scores? 

Despite conditioning models having now been used for decades in large-scale international assessments, 

the PISA technical reports provide little rationale for their use; it has simply been described as a “natural 

extension” of IRT (OECD, 2014a, p. 145). In a nutshell, they are essentially an application of Rubin’s 

(1987) well-known multiple imputation (MI) methodology applied to IRT, treating students’ latent 

abilities as an extreme form of missing data. The motivation for their use hence closely follows the 

rationale put forward in the MI literature; it is necessary to include background variables in the 

estimation of students’ latent abilities in order to (a) facilitate unbiased estimations of group differences 

(e.g. difference in achievement between boys and girls)4 – see (Mislevy, 1991; Mislevy et al., 1992) 

and (b) reduce uncertainty in measurement (van Rijn, 2018). 

 
3 As a result, the first and final part of the procedure described above will not be directly replicated in this paper. 
Rather, the officially published numbers (e.g. values of item difficulties) will be used instead. 
4 In the MI literature, it is widely suggested that (in the presence of missing data) the relationship between a 
variable and the outcome of interest will be attenuated (i.e. there will be downward bias in the estimated 
coefficient) unless that variable is included in the imputation model. This idea is also applied within the 
conditioning modelling literature, with it being claimed that the relationship between students’ background 
characteristics and their achievement will be attenuated unless that variable is included in the conditioning model. 



The idea behind the first of these points is best explained with a simplified example. Imagine a rotated 

assessment design where only half of the students receive reading questions, but all receive mathematics 

questions. Now assume that female students achieve 10 achievement points more in reading than their 

male counterparts, but that there is no gender difference in mathematics. If a standard IRT model is 

applied (without conditioning upon gender), students who did not answer the reading questions would 

be assigned a reading score based solely upon their responses to the mathematics questions. 

Consequently, for the part of the sample that were given only mathematics questions, girls would be 

assigned the same reading scores as boys. This would in turn mean that, were we to estimate gender 

differences in reading achievement across the whole sample, we would find a difference of just five test 

points rather than 10 (i.e. there would be attenuation bias affecting the results). When using complex 

rotated test designs, estimates of such group differences hence need to be adjusted in order to produce 

unbiased results. Within PISA, this is likely to be particularly important for the minor domains, where 

there are large amounts of “missing data”. 

This simple example illustrates why it is important that PISA (and other international surveys) use a 

conditioning model. However, as noted by Rutkowski (2014) and Wu (2005), it is important that this 

model is correctly specified. Otherwise, bias might be introduced. At a minimum, it is vital that 

thorough investigations are undertaken to consider how PISA results might change if a different 

conditioning model is used. This not only holds true for average PISA scores (the subject of much 

attention), but also measures of educational inequality and differences between key sub-groups (e.g. 

how gender and migrant-native student gaps compare across countries).  Indeed, while there are strong 

theoretical arguments for PISA’s use of a conditioning model, the substantial complexity it introduces 

has meant it has thus far not been closely scrutinised (Goldstein, 2017). The aim of this paper is to fill 

this gap in the literature. 

Replication of the PISA methodology 

In order to investigate how the specification of the conditioning model influences PISA results, we 

begin by attempting to replicate the PISA methodology of creating plausible values as closely as 

possible. Following the formulas and annotation used within the OECD technical reports (OECD, 

2014a, pp. 144–146), let:  

- ! = ($!, … , $") denote the latent variable of the ( domains, 

- )#(!; +) be the density of the of the latent variable !, 

- + = (µ, σ$) denote the parameters of the density for a unidimensional latent variable and + =

(., /) for a multidimensional, 

-  0% denote a vector of 1 values (e.g. background characteristics) for student 2 and 

- 3 be a vector of regression coefficients. 



The following paragraphs focus on the core part of the conditioning model as defined in PISA; we adopt 

the IRT model and its response vector as it described within the technical report. Assuming that the 

density of a certain latent achievement ($&) follows a normal distribution with 4(µ, σ$), as done within 

PISA, then the density function becomes5: 

)#($&; +) = (267$)'
!
$89: ;−

($& − µ)$

27$
=. 

In the above, no conditioning model has been applied. Now, let’s assume that students from different 

sub-populations (e.g. boys and girls) have different abilities. The density function above now needs to 

be tweaked to reflect this (which is done via the “conditioning model”). While the variance of the 

density stays the same, the mean µ is replaced with the regression model estimate 0%( ?. As a result, the 

latent variable is now represented through $&) = 0%( ? + A), with the independent error term having 

zero mean and being normally distributed. Note that 0% can consist of several different background 

characteristics (e.g. gender, grade, parental education, attitudes towards school, young people’s self-

efficacy) which researchers may want to relate to student achievement within secondary analyses. 

If we plug this regression into the density function, we end up with the following conditioning model: 

)#($&); 0%, ?, 7$) = (267$)'
!
$ exp E−

1
27$

($&) − 0%( ?)(($&) − 0%( ?)G. 

 

This can be generalised to facilitate multidimensional latent variable estimation (e.g. the estimation in 

PISA of students’ reading, science and mathematics abilities) using a multivariate normal distribution 

with respective parameters: 

)#(!%; H%, I, J) = (26)'
"
$ |J|'

!
$ exp E−

1
2
(!% − IH%)(J'!(!% − IH%)G. 

In this case I is a matrix of the regression coefficients with the different dimensions, / is the variance-

covariance matrix for the ( dimensions and H% is the vector of fixed variables equivalent to 0% in the 

unidimensional case. 

Empirically, we apply this approach to the PISA 2012 data as described in Appendix B. 

 
5 For the estimation of an IRT model, some assumptions need to be made. There are different approaches to 
enable the estimation. The approach involving the specification of a density for the latent variables is called the 
“marginal approach” and is used in PISA.  



How are student background data incorporated into the plausible values? 

As stated above, the conditioning variables are a vital part of the conditioning model. In PISA 2012, all 

variables from the background questionnaires are recoded, pre-processed6 and then used as conditioning 

variables (0%). Within the conditioning model, each background variable is treated as either (OECD, 

2014a, p. 157): 

•  A direct regressor. These are added straight to 0% without any further processing, just deviation 

contrast coding. Only the following handful of variables are direct regressors: gender, school 

ID, grade, mothers and fathers socio-economic index and booklet IDs7. These variables are 

therefore available for all students in the PISA conditioning model8. 

• An indirect regressor. The remaining (vast majority) of background variables are recoded in 

one of three ways: (a) Combined into preliminary questionnaire indices; (b) Dummy-coded if 

categorical or (c) Centred and a dummy variable added for missing information if numerical9. 

A principal component analysis (PCA) is then conducted on these recoded variables, with as 

many components retained as necessary to explain 95% of the variance. The retained 

components are then included in the vector of conditioning variables 0%. According to the 

official documentation, no imputation or other approaches to dealing with the large amounts of 

missing background data (due to the rotated questionnaire design) were applied. The 

conditioning variables 0% are computed separately by country and may therefore vary (e.g. in 

terms of the number of components that were retained). For each country, all available 

information was used10. 

Analytical aim of this paper 

While the PISA technical reports contain a lot of information, only two of the nineteen chapters are 

dedicated to the computation of the plausible values. It therefore lacks the finer details about the 

computational procedures. We nevertheless try to reproduce the published plausible values as closely 

 
6 By recoding, we mean altering and transforming the format of the variable without changing the meaning or 
value of the variables (e.g. contrast/dummy-coding of categorical variables: instead of having one variable 
existing of all different categories, we have an indicator for the categories (-1 due to not adding a reference 
category indicator) which is 1 if the student answered in that category, -1 if in the reference category was 
selected or zero if neither). By pre-processing, we mean altering and transforming the values of the variables 
(e.g. computing a new questionnaire index by averaging multiple variables or using principle components). 
Further details on the recoding and pre-processing used in PISA 2012 can be found in the technical report 
(OECD, 2014a, pp. 157, 421–431). 
7 The contrast coding for booklets was further tweaked so that the information for students who only answered 
questions in two domains is based on information from all booklets that have items in a domain. 
8 This is true even with the questionnaire rotation used in PISA 2012, as questions capturing this information 
was seen by all students. 
9 The exact details for all recoding can be found in Annex B in the technical report (OECD, 2014a, pp. 421–
431). 
10 For example, Germany administered the parental questionnaire. This meant that more items were included in 
the PCA for the computation of indirect regressors in Germany than in most other countries. 



as possible. We then alter how the conditioning variables are used in the PISA scaling process to 

examine how the specification of the conditioning model affects cross-country comparisons of PISA 

scores.  

To achieve this goal, the conditioning variables are divided into three groups: (a) school-level direct 

regressors (contrast codes for school ID), (b) individual-level direct regressors (all remaining contrast 

codes) and (c) indirect regressors. Using different combinations of the above, we will generate eight 

alternative sets of plausible values, each based upon a different specification of the conditioning model. 

These eight alternatives can be summarised as follows: 

0. No conditioning variables (i.e.  no conditioning model at all) 

1. School direct regressors only 

2. Individual direct regressors only 

3. Indirect regressors only 

4. All direct regressors (school + individual) 

5. School direct regressors and indirect regressors 

6. Individual direct regressors and indirect regressors 

7. All regressors (as used in PISA). 

This enables us to analyse how the specification of the conditioning model affects cross-country 

comparisons of PISA scores.  

All computations and analyses within this paper are done within R (R Core Team, 2019) using the 

‘TAM’ (Robitzsch, Kiefer, & Wu, 2018) and ‘intsvy’ (Caro & Biecek, 2017) packages. Further details 

about the computational procedures (both the replication and altering the conditioning variables) can 

be found in Appendix C. For the comparisons and analyses of the produced plausible values, we 

accounted for the sample design by using BRR weights in combination with the final student weight. 

Results 

Average scores 

Figure 2 illustrates the relationship (at the country level) between our self-computed country average 

PISA scores and the ‘official’ OECD scores. The upper panel refers to our plausible value computation 

without conditioning (i.e. background variables have not been included in the conditioning model). The 

lower panel is where the full conditioning model (including all variables stated in the PISA 2012 

technical report) has been used.  



 

Notes: The ‘official’ country average scores are plotted along the horizonal axis and our self-computed 
scores along the vertical axis. The upper panel refer to results where no conditioning upon background 
characteristics has been applied. The lower panel is where the full conditional model (as described in 
the PISA 2012 report) has been applied. The 45-degree line is where these two values are equal. The 
Person correlations, starting in the top-left hand graph and working right, are .999, .997, .997, .998, 
.936 and .995.  

Figure 2. Countries’ average PISA scores. Official versus self-computed scores  

Our replication of the PISA plausible values has succeeded to different degrees. The correlation between 

our country averages and the ‘official’ country averages is very good for the major domain 

(mathematics) where the correlation is above 0.998 (regardless of whether conditioning is used). This 

illustrates two key points: first, consistent with Jerrim et al. (2018), independent replication of country 

average major domain scores is feasible and, second, cross-country comparisons of country averages in 

the major domain do not vary depending upon whether conditioning modelling is used. 

Similar results hold for science (one of the minor domains). Although there is slightly more variation 

between the official country average and our replicated values, the cross-country correlation in the 

results is still strong; the Pearson correlation is .995 with conditioning (lower panel) and .997 without 

(upper panel). This demonstrates that country average scores in one of the minor domains (science) can 

also be replicated and are not affected by whether conditioning is used. 



The results for reading (the other minor domain) are, however, more of a concern. In the upper panel, 

when no conditioning is applied, our country averages closely replicate the official OECD scores 

(Pearson correlation = .997). This changes in the bottom panel once we condition upon background 

data. Specifically, the correlation between our replicated country averages and the official PISA average 

reading scores falls to .936, with many individual countries experiencing an important change to their 

results. For instance, at the extreme, the average reading score in Chile increases from 441 to 472 (i.e. 

by around 0.3 standard deviations or roughly a year of additional schooling), while in Japan it falls from 

538 to 493 (i.e. a drop of almost half an international standard deviation). Indeed, when conditioning 

upon background characteristics, our estimates of average reading scores in lower performing countries 

tend to be higher than the official results, while our average reading scores for high performing countries 

tend to be lower. This highlights an important finding; whether one uses background data in the 

construction of PISA scores can lead to large changes in the comparative performance of countries 

within at least one of the minor domains. In other words, the method used to derive the PISA scores can 

have a significant impact upon country rankings, independent upon how students responded to the test 

questions. 

Given these results, from this point forward, we focus upon findings for reading in the main text. Full 

results for all three domains can be found in Appendix D (mathematics), E (science) and F (reading). 

We also note in our discussion where findings differ across the three domains.  

To illustrate the possible impact of conditioning on average reading scores, we focus on the comparison 

of our self-computed plausible values with and without conditioning. This can be found in Figure 3. 

The lines depict the effect that conditioning has on country average reading scores. 



 

Notes: Triangles provide estimates without conditioning and circles with conditioning. Solid markers 
are OECD countries and hollow markers non-OECD countries.  

Figure 3. Country average reading scores with and without conditioning 

In general, average reading scores within most countries decline when conditioning is applied, with 

only 10 out of 60 countries experiencing an increase. Interestingly, OECD countries (solid markers) 

experience an average drop of 21 points in reading scores when we apply conditioning, which is much 

larger than the (on average) six-point decline in non-OECD countries (hollow markers). Indeed, as 

Figure 3 demonstrates, the impact of conditioning in low-performing countries is relatively small (the 

circle and triangular markers tend to sit on top of each other when looking at the left-hand side of Figure 

2) while in middle-to-high performing countries the impact of conditioning seems much larger (the 

circle and triangular markers are quite far apart when looking at the right-hand side of Figure 3). 

Moreover, only one of the 10 countries with a positive increase in reading scores after conditioning are 

members of the OECD: Chile (+25 points). In terms of the often-cited PISA ‘country-rankings’, 

conditioning has relatively little impact upon the composition of the top and bottom performing groups. 

It does, however, lead to important changes around the middle. For instance, Norway drops 15 places 

(from 17th to 33rd) while the Chile rises 19 places (form 43rd to 24th). 

What part of the conditioning model leads to this difference? The next part of the analysis compares 

results using different specifications of the conditioning model, focusing upon three different subsets 

of conditioning variables: (a) school direct regressors (i.e. contrast codes for each school); (b) individual 



direct regressors (e.g. gender, socio-economic status) and (c) indirect regressors (i.e. the rest of the 

background questionnaire variables that have been reduced into a set of principal components). 

Figure 4 displays the correlation between the plausible values (at the individual level) using different 

specifications of the conditioning model. The greener a square is, the closer the correlation is to one. 

On the other hand, red shading denotes a correlation of 0.7 (around the minimum we observe across 

any model).  

Two points come to attention. First, the shading clearly illustrates that the correlation varies between 

the domains. As expected, the results for mathematics (the major domain) have the strongest 

correlations across different conditioning model specifications. While the correlations for science are 

slightly lower, those for reading are particularly low (as illustrated by the predominance of red squares). 

This highlights how, although the precise specification of the conditioning model has little impact upon 

the results in the major domain of mathematics, it has important implications in the minor domains 

(particularly reading). As the minor domains have a lot fewer test questions in the PISA test design than 

the major domain, and given the correlation between mathematics and reading achievement is likely to 

be substantially lower than the correlation between mathematics and science achievement, this finding 

makes sense.  

Second, these findings are reinforced when looking at the diagonals in Figure 4. The correlations sit 

between 0.91 and 0.93 in mathematics, 0.90 and 0.92 in science and 0.85 and 0.89 in reading. As 

plausible values incorporate uncertainty about individual achievement, higher correlations between the 

plausible values created using different conditioning models partially reflect the greater certainty in 

measurement. Reading hence has lower correlations than mathematics and science due to the extra 

uncertainty in the results for this domain.  



 

Notes. The correlations are based on individual-level plausible values across all countries. The colour 
scale ranges from L = .7 (red) to L = 1 (green). M0 = no conditioning; M1-M6 correspond to 
conditioning with different subsets of conditioning variables (1: school direct regressors, 2: individual 
direct regressors, 3: indirect regressor, 4: all direct regressors, 5: school direct and indirect regressors, 
6: individual direct and indirect regressors); M7 = full conditioning. 

Figure 4. Correlations of the individual-level plausible values in mathematics, reading and 
science with different specifications of the conditioning model 

Table 1 goes one step further and shows the average country reading scores of the OECD countries for 

different specifications of the conditioning model. The shading should be read vertically (within 

conditioning model specification) with green (red) cells indicating higher (lower) average scores. The 

rows at the bottom provide the OECD average/median and the correlation of results across different 

model specifications. 



Table 1. Variation in estimated average PISA reading scores by conditioning model 
specification. OECD countries. 

Country M0 M1 M2 M3 M4 M5 M6 M7 
Japan 536 526 501 523 493 527 493 493 
South Korea 533 542 498 - 500 - - - 
Finland 523 524 487 524 491 524 492 497 
Canada 521 544 521 530 519 537 521 518 
Ireland 520 518 518 524 506 523 506 503 
Poland 515 528 479 515 481 517 480 483 
Estonia 514 531 514 536 511 534 516 500 
New Zealand 512 512 480 512 481 512 483 486 
Australia 509 501 478 497 484 505 474 485 
Belgium 509 502 463 506 467 509 460 470 
Netherlands 509 509 474 509 476 509 475 479 
France 508 511 467 500 473 510 471 475 
Norway 506 491 458 462 461 493 462 464 
Germany 505 509 492 509 488 514 490 486 
Switzerland 504 508 466 506 477 507 475 474 
United Kingdom 500 499 472 499 474 498 476 479 
Denmark 496 489 473 506 484 502 479 492 
USA 496 510 502 503 500 508 496 494 
Israel 494 507 443 498 447 504 448 455 
Czech Republic 493 489 459 490 462 488 460 464 
Italy 491 491 449 490 453 490 453 459 
Austria 489 491 455 488 460 493 469 476 
Hungary 489 483 456 489 458 487 458 465 
Portugal 489 526 452 501 452 501 463 465 
Sweden 489 520 447 506 450 503 491 468 
Spain 488 489 447 488 449 488 452 454 
Luxemburg 487 487 453 487 453 486 476 481 
Iceland 485 485 445 484 446 484 446 447 
Greece 481 481 448 481 464 481 463 464 
Slovenia 477 485 449 477 464 492 466 460 
Turkey 474 474 458 474 481 474 469 467 
Slovak Republic 462 478 452 471 440 478 444 455 
Chile 447 489 481 494 463 477 480 472 
Mexico 435 432 414 432 422 432 430 427 
OECD average 497 502 469 497 471 500 473 474 
OECD median 496 502 465 499 470 502 474 474 
Correlation with M0 1.00 0.83 0.70 0.80 0.74 0.91 0.63 0.74 
Correlation with M7 0.74 0.76 0.93 0.84 0.93 0.84 0.93 1.00 

Notes: Figures illustrate how average PISA reading scores vary depending upon the specification of the 
conditioning models. Results for non-OECD countries reported in Table F.1. Green shading indicates 
higher scores relative to other countries and red cells lower scores. M0 = no conditioning; M1-M6 
correspond to conditioning with different subsets of conditioning variables (1: school direct regressors, 
2: individual direct regressors, 3: indirect regressor, 4: all direct regressors, 5: school direct and indirect 
regressors, 6: individual direct and indirect regressors); M7 = full conditioning. South Korea is missing 
scores due to computational difficulties. 



Relatively few countries (e.g. New Zealand and Czech Republic) maintain a stable position in the PISA 

reading rankings across all different specifications of the conditioning model; most countries relative 

reading scores change depending upon the model specification. For instance, the cross-country 

correlation between the results with no conditioning (M0) and with any form of conditioning tends to 

be around 0.70 to 0.91. Likewise, there are sometimes substantial differences between using a relatively 

sparse conditioning model (e.g. M1 or M3) and the full conditioning model (M7). Furthermore, it is 

striking that all specifications including the individual direct regressors (M2, M4 and M6) are the only 

ones with correlation above 0.85 (0.93 in all three cases) with the full conditioning model (M7, which 

also includes individual direct regressors). The individual direct regressors thus appear to be a dominant 

factor in the conditioning model. This suggests that it is not only the decision of whether to use 

conditioning that is important, but also the precise specification of the conditioning model. It is also 

noteworthy how the OECD average reading score changes non-trivially between model specifications, 

from a minimum of 469 (individual direct regressors) to a maximum of 502 (school direct regressors). 

The average reading scores (and ranking) for selected countries are particularly sensitive to conditioning 

model specification. Take, for example, Portugal. This country has a relatively high performance (a 

green shaded cell, corresponding to 6th place) when only school direct regressors are used. But it then 

lights up in orange for all other specifications (15th and 18th place for indirect regressors (and direct 

school regressors) and otherwise between 22nd and 28th place). Other countries with very large changes 

in performance depending upon conditioning model specification include Chile, Norway, Sweden, 

Israel, Belgium and the United States. This suggests the selection of conditioning variables can have a 

significant (and yet unpredictable) impact upon countries’ average PISA scores in at least one of the 

minor domains. 

Inequality in PISA scores 

While country average PISA scores receive a lot of attention, the data is also used in many other ways. 

One of the most prominent is in cross-country comparisons of educational inequality; e.g. since 2009 

PISA dedicates the whole second volume of their international reports towards equity and outcomes, 

and UNESCO uses PISA data for their report on educational inequality  (Gromada, Rees, Chzhen, & 

Cuesta, 2018) as well as in research such as Oppedisano and Turati (2015) and Gamboa and Waltenberg 

(2012). We therefore illustrate in Table 2 how sensitive a widely used measure of educational inequality 

(the difference between the 90th and 10th percentile) is to different specifications of the conditioning 

model. Green (red) shading in this table illustrates lower (higher) levels of inequality. 

The first key point of note from Table 2 is that conditioning leads to an increase in estimated educational 

inequality (on average) across OECD countries. Specifically, the average percentile gap rises by 28 

points, from 212 with no conditioning to 240 when full conditioning is applied. The gap between the 

90th and 10th percentile increases substantially as soon as any conditioning is used. 



Table 2. Estimates of inequality in PISA reading scores across countries by specification of the 
conditioning model (P90 – P10 gaps). OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 
Mexico 163 193 200 194 197 195 199 197 
Chile 178 137 199 130 201 153 172 207 
Estonia 181 173 194 143 203 168 221 212 
Ireland 192 171 238 183 199 185 207 198 
Turkey 192 217 237 218 220 221 224 225 
Denmark 193 190 183 134 205 194 212 211 
Poland 198 241 204 209 218 211 216 221 
Spain 199 225 241 227 240 227 237 237 
Czech Republic 202 218 238 221 228 219 238 227 
Canada 205 217 246 190 257 200 254 253 
Switzerland 206 236 237 233 240 234 237 242 
USA 209 213 207 175 191 171 185 187 
Austria 210 209 221 235 206 230 236 240 
Germany 210 200 223 204 244 221 230 244 
Hungary 210 193 173 201 199 199 193 212 
Netherlands 214 237 235 240 241 239 242 242 
Slovenia 214 229 228 240 265 205 264 251 
Finland 215 241 253 236 253 237 253 249 
Portugal 215 215 252 193 246 210 239 261 
United Kingdom 216 244 242 239 245 243 243 244 
Italy 216 247 266 247 266 247 265 263 
Iceland 218 245 246 245 245 246 249 249 
Greece 221 250 274 250 269 249 268 268 
Norway 221 207 151 168 166 233 191 205 
Japan 222 269 259 274 245 262 240 245 
Australia 224 239 233 240 253 257 233 254 
Belgium 230 209 253 222 289 225 261 255 
Sweden 230 228 293 231 282 233 284 270 
Israel 239 219 257 251 290 230 294 275 
New Zealand 239 266 282 267 282 269 280 278 
Slovakia 240 262 260 255 252 264 260 258 
France 241 247 242 259 260 255 258 272 
Luxemburg 241 269 285 270 285 270 276 272 
OECD average 212 223 235 219 239 224 238 240 
OECD median 214 225 238 231 245 230 239 244 
Correlation with M0 1.00 0.71 0.58 0.71 0.69 0.77 0.72 0.78 
Correlation with M7 0.78 0.69 0.81 0.77 0.93 0.75 0.93 1.00 

Notes: Figures illustrate how the difference between the 90th and 10th percentile of PISA reading scores 
changes depending upon the specification of the conditioning model. Results for non-OECD countries 
reported in Table F.2. Green shading indicates less inequality in reading scores relative to other 
countries and red cells greater inequality. M0 = no conditioning; M1-M6 correspond to conditioning 
with different subsets of conditioning variables (1: school direct regressors, 2: individual direct 
regressors, 3: indirect regressor, 4: all direct regressors, 5: school direct and indirect regressors, 6: 
individual direct and indirect regressors); M7 = full conditioning. 

 



Second, the relative position of countries in international comparisons of educational inequality appears 

more sensitive to the specification of the conditioning model than the average scores. The cross-country 

correlation between M1-M6 and M7 (full conditioning) generally falls between 0.7 and 0.95, illustrating 

how some countries experience an important change to their results, depending upon which model is 

used. At the same time, none of the specifications shows a particularly high correlation (L between 0.58 

and 0.77) with M0 (no conditioning applied). Moreover, the models with the individual direct regressors 

and at least one other component (M4, M6 and M7) exhibit a particularly high correlation (0.93 as 

opposed to 0.81 which is the next highest and belongs to the individual direct regressors only) and a 

rather similar colour pattern. This showcases, especially against the correlation of 0.75 between M5 and 

M7, that the individual direct regressors play an influential part in the conditioning model.  

Finally, the countries whose average scores are most sensitive to conditioning model specification are 

not necessarily the countries that are also the most sensitive in terms of educational inequality. For 

example, educational inequality in Chile remains quite stable in Table 2, despite experiencing large 

swings in its average score (recall Table 1). Now, it seems other countries are impacted more. Norway, 

Sweden, Canada, Portugal, Japan and Belgium are prominent examples, where estimates of educational 

inequality are highly sensitive to the specification of the conditioning model. Indeed, Canada swings 

from below the OECD average when no conditioning is applied (205 versus 212) to becoming a country 

where educational inequality appears to be rather high (e.g. 253 versus 240 in model M7). Differences 

in country results with and without any conditioning can also be extreme. Take Norway, for example. 

This country has comparatively low levels of inequality when conditioning is applied (1st to 8th position 

with the exception of a 19th place for direct school + indirect regressors), but relatively high inequality 

when no conditioning is used (23rd). The results for Belgium, on the other hand, fluctuate (between 32nd 

and 9th place) depending on the chosen specification.  

When examining the corresponding tables in mathematics and science (Tables D.1 and D.3 for 

mathematics and Tables E.1 and E.3 for science), it becomes obvious that the specification of the 

conditioning model also has substantial influence upon estimates of educational inequality in both other 

domains. In other words, unlike the results for average scores (where the issue was isolated to reading), 

estimates of educational inequality are affected across all three domains. This stresses a key point – that 

the OECD should conduct (and report results from) a much wider array of sensitivity analyses around 

the specification of the conditioning model. This is particularly true for results in the minor domains – 

and for measures of educational inequality - where the impact seems to be greatest.  

The association between PISA scores and background characteristics 

PISA is also often used (including by the OECD) to compare the performance of groups (e.g. gender, 

socio-economic status, language). But it is well-known that IRT, when used in conjunction with rotated 

test designs, can lead to attenuation of such group differences (Mislevy, 1991).  One of the main 



motivations for using conditioning models is to counteract such attenuation bias. We begin by 

illustrating this issue with respect to gender differences, as this is one of the major group comparisons 

focused upon within the OECD PISA reports (e.g. 3 of the 14 statements in the 2012 executive summary 

address gender gaps; OECD, 2014b). Gender is one of the individual direct regressors meaning that, 

once direct regressors have been included in the conditioning model, the potential problem of 

attenuation bias should be resolved. However, little research has previously considered how the precise 

specification of the conditioning model affects cross-country comparisons of group (e.g. gender) 

differences – which this paper adds to the literature. 

Figure 5 illustrates the estimated gender gap across all three domains with and without full conditioning 

applied (this has been computed by regressing reading performance upon an indicator of whether the 

student is female). The 45-degree line marks where the gender gap is the same whether conditioning is 

applied or not. For reading and mathematics, the magnitude of gender differences clearly increases once 

conditioning has been used (i.e. the data points – countries – are further away from the 45-degree line). 

Although the points for science are closer to the 45-degree line, Figure 5 nevertheless highlights the 

general point (already well established in the literature) that failing to include a given factor in the 

conditioning model can lead to attenuation bias in the results (Mislevy, 1991). 

The gender gap differs in magnitude and direction depending upon the domain. In reading, girls perform 

better than boys independent of the specification of the conditioning model, though the gender gap gets 

noticeably bigger when conditioning is used (the average gender gap increases from 14 to 33 points). 

In mathematics, before conditioning is applied, there is (on average across countries) no gender gap (0 

points). Yet, when conditioning is applied, boys achieve average mathematics scores 6 points higher 

than girls.11 The gender gap is more concentrated in science, with no obvious change occurring when 

conditioning is used. Only in some – but not all – countries is there evidence of attenuation when 

conditioning is not used in the scaling model. 

 
11 Interestingly, almost all points are below the 45-degree line for mathematics, even the ones with values above 
zero without conditioning. This means that the mathematics gender gap shifts in favour of boys but is not 
necessarily moving away further from zero. As a result, attenuation can still be observed in some cases. Finland, 
for example, has a gender difference of 9 points without conditioning, but only a gender gap of 2 points with full 
conditioning. 



 

Notes: The gender gaps when using no conditioning are plotted along the horizontal axis and those 
when using full conditioning along the vertical axis. The 45-degree line is where these two values are 
equal. The country-level Person correlations, starting left and working right, are L = .944, L = .908 
and L = .966. 

Figure 5. Country gender gap in mathematics, reading and science with and without 
conditioning 

 

Next, we take a closer look at models M0, M2 and M7 to further examine how the specification of the 

conditioning model impacts the gender gap. Figure 6 hence illustrates the gender gap in reading using 

model M0 (no conditioning - circle), M2 (just direct individual regressors including gender - diamond) 

and M7 (the full model - triangle).  

For most countries, the diamond (M2) and triangle (M7) are pointing in the same direction and for about 

a third they sit on top of each other. This suggests that, in most countries, the gender gap is not sensitive 

to the exact specification of the conditioning model (once gender has been included as a direct regressor) 

with a potential small increase or decrease by the full model. There are, nevertheless, some important 

changes to the results for individual countries (that are somewhat difficult to explain). For instance, in 

Australia, Israel, France, Poland, Slovenia, Norway and Singapore the estimated gender gap from M0 

(no conditioning) and M2 (just individual direct regressors) are similar. Yet there is a large jump in the 

magnitude of the gender gap in M7 (full conditioning model applied). Indeed, in Australia, the gender 

gap decreases to by nine points when applying M2 (-1 point) but there is a jump in the other direction 

when using model M7 (+15 points). Such a change in results is perplexing and again suggests that the 

precise specification of the conditioning model applied can have an impact upon a key aspect of a 

country’s results. 



 

Notes: Circles provide estimates without conditioning, diamonds for conditioning only with individual 
direct regressors and triangles for full conditioning. Solid markers denote OECD countries and hollow 
markers non-OECD countries. 

Figure 6. Country reading gender gap without conditioning (model 0), just with individual 
direct regressor incl. gender (model 2) and with full conditioning (model 7) 

 

Thus far, we have focused upon gender as a ‘direct regressor’ (meaning it is entered directly into the 

PISA conditioning model). Yet most background data collected in PISA are “indirect regressors” - 

meaning they are only incorporated into the conditioning model having first been pre-processed using 

a Principle Component Analysis (recall subsection ‘How are student background data incorporated into 

the plausible values?’ in ‘Data & methods’ for further details). Investigating whether the relationship 

between indirect regressors and PISA scores changes depending upon the specification of the 

conditioning model is hence also of interest. 

The results from such an analysis are presented in Figure 7, focusing upon migrant status (one of the 

most widely used contextual variables from PISA that is an indirect regressor in the conditioning 

model). This shows us how the reading gap between native and migrant students changes between M0 

(no conditioning), M3 (just indirect regressors – as captured within the retained principal components) 

and M7 (the full conditioning model). The key finding from this graph is that the three symbols usually 

sit on top of each other. In other words, for most countries, it does not matter which conditioning model 

is used (or whether conditioning is used at all) – you generally get the same result (and indeed the 



average gap remains -22 points in M3 and M7 and only changes in the second decimal place). Yet there 

are again some important exceptions to this finding, most notably Norway with a migrant-native reading 

gap of -43 points under M0, -1 point under M3 and -19 points under M7. Other countries with large 

variation in migrant-native achievement gaps tend to have very small proportions of migrant students 

in the PISA sample, such as Bulgaria (0.4%), Peru (0.5%), Poland (0.2%), Romania (0.1%) and 

Thailand (0.5%). In Norway, on the other hand, around one-in-ten students are migrants – meaning the 

fluctuation in the results for this country are unlikely to be due to the small sample size. 

Figure 7. Country reading gap between migrant and native students without conditioning (M0), 
with indirect regressors (migration status was pre-processed) in conditioning (M3) and with full 

conditioning (M7) 

One might be tempted to conclude from this that it suggests that the PISA results for migrant gaps are 

generally robust to conditioning model specification. However, an alternative explanation could be that 

migration status has not been sufficiently represented within the principal components that form the 

individual indirect regressors.  Would the magnitude of the migrant-native gaps change if migrant status 

was included as direct regressor in the conditioning model instead? We explore this issue in Appendix 

G, where two further versions of the conditioning model were computed:  

• Model M2 was altered to also include migrant status12 as a direct regressor (M2a) 

 
12 Pre-computed variable ‘IMMIG’ in the PISA 2012 data set.  



• Model M7, the full conditioning model, was re-estimated having included migrant status as a 

direct regressor, rather than being included within the indirect regressor PCs (M7a)  

These models allow us to assess whether including a variable as a direct (rather than indirect) regressor 

changes the results. In summary, we find that making this change has relatively little impact upon the 

substantive results. At least in the case of migrant status, including this variable only as an indirect 

regressor seems to be sufficient. 

The impact of conditioning upon standard errors 

Another goal of conditioning, apart from counteracting attenuation, is higher precision in group 

estimates (van Rijn, 2018). To conclude this section, we therefore investigate how conditioning affects 

the standard error of country average scores. Figure 8 provides a boxplot illustrating how the standard 

error of the mean changes for different specifications of the conditioning model (each country is counted 

as one data point within each box plot). One would anticipate that the boxplots should move southwards 

as one moves from left (M0 – no conditioning) to right (M7 – full conditioning). But this is not the case; 

standard errors are typically higher once conditioning is used. In fact, in mathematics no country had a 

smaller standard error when full conditioning was used (compared to no conditioning). In reading, only 

one country (Montenegro) experienced an increase in precision when full conditioning was applied, 

while four countries did in science (Singapore, Macao, Taipei and Estonia). However, in general, no 

substantial benefit can be found for precision from conditioning, with standard errors actually inflating, 

if anything.  



 

Notes. The boxplots show the standard errors of the country average score of different countries. M0-
M7 denote different specifications of the conditioning model. M0 = no conditioning; M1-M6 
correspond to conditioning with different subsets of conditioning variables (1: school direct regressors, 
2: individual direct regressors, 3: indirect regressor, 4: all direct regressors, 5: school direct and indirect 
regressors, 6: individual direct and indirect regressors); M7 = full conditioning 

Figure 8. Boxplots of standard errors of country average scores in mathematics, reading and 
science with different specifications of the conditioning model 

Conclusions 

PISA is an international large-scale assessment which examines the educational achievement of 15-

year-old students across the world. It aims to provide comparable achievement scores in mathematics, 

reading and science between countries and groups, as well as over time. This has resulted in PISA 



becoming one of the key studies used for evidence-based education policymaking across the globe. As 

a tool which can potentially influence many people’s lives, it is essential that the statistical foundations 

that underpins this study are sound. Yet, time and again, criticisms have been made about the 

opaqueness of PISA’s methodology (Goldstein, 2017). Despite this, relatively little research has closely 

scrutinized key aspects of the PISA scaling model. This includes “conditioning”, where background 

variables are used in the derivation of the PISA plausible values.  

This paper has tried to fill this gap in the literature. Specifically, we have re-estimated PISA 2012 scores 

for each participating country having altered key aspects of the conditioning model. This includes 

investigating how key results change when different sets of background variables are used in the PISA 

conditioning model, and what happens when no conditioning variables are used in the construction of 

PISA scores at all. We not only document the impact that this has upon average country level scores, 

but also cross-national comparisons of educational inequality (i.e. the spread of achievement) and gaps 

in performance between different groups (e.g. gender differences).  

Our results illustrate how the precise specification of the conditioning model does indeed matter, though 

the impact this has depends upon both the subject and the statistic of interest. In terms of average scores, 

results for the major domain can be considered “robust” (i.e. are unaffected by whether/how 

conditioning variables are used). Yet results for the minor domains are more mixed. Although the 

specification of the conditioning model has little impact upon cross-country comparisons of average 

scores in science, the same is not true for reading – where average scores (and, consequently, countries 

positions in the PISA ranking) change a lot. Rather different results were obtained for educational 

inequality, where cross-country comparisons in all three domains were sensitive to the specification of 

the conditioning model. The conditioning model specification was also found to have some impact upon 

the magnitude of group differences, with particularly big changes observed for gender differences in 

reading and mathematics.  

While we believe this study illustrates some important points about the PISA scaling methodology, 

findings should be interpreted considering its limitations. First, while great effort has been made to 

replicate the official PISA methodology, there remained some differences between our self-computed 

plausible values and those provided in the OECD PISA database. Although we believe that the approach 

we have taken provides a sufficient basis for the present study, it is not a perfect replicate for what the 

OECD (and their contractors) have done. To be as open as possible about our approach (and to allow 

other researchers to independently scrutinise our findings) we have made freely available the code we 

have used to produce our results (available from https://github.com/lrzieger/). We now urge the OECD 

to do the same. 

Second, we focus on the methodology used for one specific PISA cycle (2012). We note that the scaling 

model (including the conditioning) changed in PISA 2015, and will likely do so again with the 



introduction of computer adaptive testing in 2018. This means that this paper is not directly applicable 

to subsequent PISA cycles, though still yields some important lessons learnt. Finally, we did not 

recompute the scale identification but used the transformation provided within the PISA technical 

reports. As it is a linear transformation, this could potentially affect the comparability of absolute 

numbers between the official and our self-computed scores. Yet this issue does not affect relative 

achievement positions (such as rankings) or the cross-country correlation of results, which are the focus 

of this paper.  

Despite these limitations, we hope this paper has made a valuable contribution to ongoing debates about 

PISA’s methodology. It adds three key points. First, the technical report is not detailed enough to allow 

independent researchers to exactly replicate and closely scrutinize the scaling model and its resulting 

plausible values. The OECD must become more transparent in its methodology, make the code used to 

produce PISA scores open-access and to make its technicalities more digestible to non-specialized 

audiences. Second, educationalists and policymakers the world over should note from our findings that, 

while results from the major domains appear to be quite trustworthy and robust, those for the minor 

domains should be treated with care. Finally, we question PISA’s reliability as a valid way to measure 

educational inequality across countries, given the major impact the conditioning model specification 

can have upon the results. All the above leads us to plead with the OECD that additional sensitivity 

analyses around the PISA results must be conducted and be transparently reported with the release of 

every future cycle (with all code used to produce the results made open-access to allow independent 

replication of the results). Unless this is done, then sceptics are only right to question whether the PISA 

results can really be trusted.  
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Appendices 

Appendix A. Which countries participated to what extent in PISA 2012? 

As explained in the main body of the paper, countries only had to administer the core domains as well 

as the student and school questionnaire. Furthermore, countries could opt to administer various 

additional domains and/or questionnaires. Table A.1 shows the extent of the countries’ participation 

and their sample size. In PISA 2012, 44 countries also administered collaborative problem solving (PS) 

and 32 countries digital reading and mathematics (DRM). In terms of questionnaires, 23 administered 

the educational career (EC), 42 the information communication technology (ICT) and only 11 the 

parental questionnaire. The PISA scaling model uses all available information for a country. 

Table A.1. Overview of countries participating in PISA 2012 in the different domains and 
questionnaires as well as their sample size in the core domains. 

   Domain Questionnaire  

Country Abbrevi
ation 

Sample 
size 

PS DRM Parental ICT  EC Easier booklets? 

Albania ALB 4743       

United Arab Emirates ARE 11500 X X    X 

Argentina ARG 5908      X 

Australia AUS 14481 X X  X X  

Austria AUT 4755 X X  X X  

Belgium BEL 8597 X X X X X  

Bulgaria BGR 5282 X     X 

Brazil BRA 19204 (X) (X)     X 

Canada CAN 21544 X X  X   

Switzerland CHE 11229     X  

Chile CHL 6856 X X X  X X 

Colombia COL 9073 X X    X 

Costa Rica CRI 4602     X X 

Czech Republic CZE 5327 X    X  

Germany DEU 5001 X X X X X  

Denmark DNK 7481 X X  X X  

Spain ESP 25313 (X) (X)    X  

Estonia EST 4779 X X   X  

Finland FIN 8829 X   X X  

France FRA 4613 X X     

United Kingdom GBR 12659 (X)       



Greece GRC 5125     X  

Hong Kong (China) HKG 4670 X X X X X  

Croatia HRV 5008 X  X X X  

Hungary HUN 4810 X X  X X  

Indonesia IDN 5622       

Ireland IRL 5016 X X  X X  

Iceland ISL 3508     X  

Israel ISR 5055 X X   X  

Italy ITA 31073 (X) (X) X  X X  

Jordan JOR 7038     X X 

Japan JPN 6351 X X   X  

Kazakhstan KAZ 5808      X 

South Korea KOR 5033 X X X X X  

Liechtenstein LIE 293     X  

Lithuania LTU 4618       

Luxemburg LUX 5258    X   

Latvia LVA 4306    X X  

Macao (China) MAC 5335 X X X X X  

Mexico MEX 33806   X  X X 

Montenegro MNE 4744 X      

Malaysia MYS 5197 X      

Netherlands NLD 4460 X    X  

Norway NOR 4686 X X   X  

New Zealand NZL 4291     X  

Peru PER 6035      X 

Poland POL 4607 X X   X  

Portugal PRT 5722 X X X X X  

Qatar QAT 10966       

Shanghai (China) QCN 5177 X X  X X  

Romania ROU 5074      X 

Russian Federation RUS 5231 X X   X  

Singapore SGP 5546 X X  X X  

Serbia SRB 4684 X   X X X 

Slovak Republic SVK 4678 X X  X X  

Slovenia SVN 5911 X X  X X  

Sweden SWE 4736 X X   X  



Chinese Taipei TAP 6046 X X   X  

Thailand THA 6606       

Tunisia TUN 4407      X 

Turkey TUR 4848 X    X  

Uruguay URY 5315 X    X X 

United States of America USA 4978 X X     

Viet Nam VNM 4959      X 

Notes: Countries in parentheses participated in the additional domains only with a fraction of their sample size, e.g. only one 
state in the country. In this paper, we do not consider them as administrating this domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B. How does the PISA scaling model take into account different domains and 
questionnaires being used in different countries?  

Not all countries administer all the PISA test domains and questionnaires (e.g. in only a small number 

of countries is the parental questionnaire collected). As a result, the precise specification of the PISA 

conditioning model differs between countries (depending upon the extent of their participation). We try 

to illustrate the subtle differences using Figures B.1 and B.2. This illustrates the following steps: 

• Step 1. Item difficulty computation. This step is always the same, regardless of the number of 

PISA questionnaires and cognitive domains that a country has chosen to conduct. This step is 

always conducted separately for each domain and is always based upon a common data set 

encompassing all countries.  

However, after this initial step, computations are then conducted separately by country.  

• Step 2. Preparation of conditioning variables. This is based on all available background 

questionnaires for a country and independent of any domain. See the description provided in 

the section entitled ‘How are student background data incorporated into the plausible values?’ 

for further details.   

• Step 3. Estimation of student scores. What happens in the third step depends upon the domains 

of PISA a country participates in (with the exception of financial literacy). If only the core 

domains are tested, a joint IRT and latent regression model is used for the three domains, where 

the item difficulties are fixed at the value from step 113 (see Figure B.1). Figure B.2 stresses 

how this step is split into two sub-steps if either (a) problem solving and/or (b) digital reading 

and mathematics were administered as well. In countries that tested students in these additional 

subjects, the regression coefficients of the conditioning variables for the core domains are fixed, 

based upon a joint model consisting of only paper reading, science and mathematics items. This 

is because “CBA [computer-based assessment] reporting scale cannot influence the PISA 

paper-based assessment” (OECD, 2014a, p. 157). For those countries, the first joint model is 

only used to retrieve the regression coefficients for the core domains, but a second joint model 

is used for the final student achievement estimation. In this second model, all available domains 

are used (e.g. problem solving can influence science), but additionally the regression 

coefficients for the core domains are fixed at the values from first joint model.  

• Step 4. Plausible values are drawn from the individual conditional achievement distribution, 

which is based on the final model within each country. It involves all available cognitive 

domains, whether this is just the three core domains (reading, mathematics and science), four 

 
13 The published item difficulties are used in our case. 



domains (the three score domains plus problem solving) or all six domains (reading, 

mathematics, science, problem solving, digital reading and digital mathematics). 

 

 

Figure B.1.Computation process of the plausible values, if the country only administered the 
three core domains                                 

 
Figure B.2. Computation process of the plausible values, if the country administered additional 
domains (problem solving and/or digital reading and mathematics) to the three core domains 



Appendix C. Computational details of the conducted analysis 

This appendix attempts to make the computational procedures we have used as transparent as 

possible. All code used within our analysis is available from https://github.com/lrzieger/. Our 

empirical approach used the following steps: 

0. Test data preparation. The already scored cognitive data set was downloaded from the OECD 

homepage (http://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm). 

Subsequent checks were conducted if the data of deleted items was removed (OECD, 2014a, 

pp. 231, 232) and if missing data was coded correctly (omitted and invalid treated as incorrect 

and not reached treated as missing; OECD, 2014a, pp. 233, 399). 

1. Item difficulty estimation. As this is not the focus of this paper and we do not want the 

conditioning model to be influenced by estimation of our own item difficulties. We therefore 

chose to use the published item difficulties within our analysis (Annex A; OECD, 2014a)14.  

2. Preparation of conditioning variables. The conditioning variables were computed from all 

available questionnaires, for each country and each assessment booklet. We used a two-stage 

process: recoding (stage 1) and pre-processing (stage 2). For the recoding and first pre-

processing, we adhere to the recoding procedures as described in the Annex B in the PISA 

2012 technical report (OECD, 2014a, pp. 421–431). The recoding is done for each country 

separately. The recoded versions of the following variables were used as direct regressors in 

the later latent regression: Booklet ID, gender, school, grade as well as mother’s and father’s 

International Socio-Economic Index  (OECD, 2014a, p. 157). The remaining variables were 

then used within a principal component analysis (PCA) using a singular value decomposition 

and the correlation matrix. As the technical report does not mention any special adaption of 

the PCA to account for the categorical nature of some variables, we do not use polychoric 

correlations. In other words, we try to stay as close to the PISA technical report as possible 

(OECD, 2014a, p. 157). From this PCA, within each country we retained enough principal 

components to explain 95% of the variance in the data. This resulted in up to ten principal 

components being extracted (and a minimum of two) within each country. As this low 

number of principle components can be surprising for some, see Appendix H ‘Number of 

principle components dependent on student questionnaire booklets’ for further information. 

The conditioning variables are composed of the direct regressors and principal components. 

3. Student score estimation. At this point, countries with large samples (over 10,000 students) 

were split into smaller groups, usually based upon the stratification variables (OECD, 2014a, 

p. 157). As a consequence, we split the data of those countries into subsamples by 

alternatingly assigning strata to the new data sets starting with the largest strata.  

 
14 It is worth noticing that we believe that the step difficulty of item PM155Q03D is a typing error. We 
substituted the value with the average value across all cycles before where it was used (τ! = 0.184, τ"=-0.184). 



4. The conditioning models are then computed, using a “divide-and-conquer” approach (Patz & 

Junker, 1999; van Rijn, 2018). This means that we first estimate the IRT model and then 

estimate the latent regression. This is the default approach used in most large-scale 

assessments as it is comparatively efficient in terms of computational effort (van Rijn, 

2018)15.  We still experience computational difficulties in four countries (South Korea, 

Liechtenstein, Columbia and Serbia) leading to missing data for those countries in some of 

the variations of the conditioning model. The functions tam.mml() and 

tam.latreg()from ‘TAM’ are used to estimate the IRT model and the latent regression. 

Quasi Monte Carlo integration (Pan & Thompson, 2007) with 2000 nodes and convergence 

criterions of .001 for deviance and .0001 for the coefficients is used within the computations.  

5. Drawing of plausible values. We draw five plausible values for each domain for each student. 

It is assumed that individual achievement distribution follows a multivariate normal 

distribution. The distributions are estimated by Monte Carlo estimation with 2000 ability 

nodes (OECD, 2014a, p. 146). 

6. Transformation of plausible values to scale. Again, the transformation of the plausible values 

to the common PISA scale is not in the focus of this paper. Therefore, we use the formulas 

from the technical report (OECD, 2014a, pp. 253, 254). For the sake of convenience, we also 

use the placement on the PISA scales.  

The computations are not deterministic and are therefore influenced by a certain amount of random 

error (e.g. in randomly drawing plausible values). To make the computations reproducible, we set 

seeds for the computation. We reran the analysis with different seeds but ended up with similar 

conclusions.  

 

 

 

 

 

 

 

 
15 This approach does have some limitations, however. For instance, it ignores the uncertainty in parameter 
estimates within the latent regression. 



Appendix D. Mathematics: Domain specific analyses 

Average scores 

Figure D.1 highlights that the country average scores in mathematics are not sensitive to the 

specification of the conditioning model. The markers for no conditioning (triangle) and full conditioning 

(circle) sit on top of each other with only few exceptions (e.g. United Arab Emirates and Chile), but 

even in those cases the difference between the two scores is comparatively small. Hence, the ranking 

of countries also remains roughly the same in mathematics independent of the conditioning model 

specification. 

 

Notes: Triangles provide estimates without conditioning and circles with conditioning. Solid markers 
are OECD countries and hollow markers non-OECD countries.  

Figure D.1. Country average mathematics scores with and without conditioning 

Table D.1 shows the average mathematics scores when using conditioning models M0-M7 and should 

be read vertically. The colours depict the scores relative to the other countries’ scores with a green (red) 

value corresponding to a higher (lower) relative score. The colour scheme across the different 

conditioning model specifications is similar, which means that  there is not much change between the 

specifications. This is confirmed by correlations between 0.99 and 1 between the different 

specifications. In contrast to reading, the OECD average score also maintains a similar level dropping 

only 2 points from no conditioning (492 points) to full conditioning (490 points).   



Table D.1. Variation in estimated average PISA mathematics scores by conditioning model 
specification. OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 
South Korea 549 557 551  -   550  -   -   -  
Japan 533 532 532 530 532 531 532 532 
Switzerland 526 527 528 527 527 526 527 527 
Netherlands 519 519 519 519 519 519 518 518 
Estonia 517 518 521 516 518 521 510 517 
Finland 515 515 516 516 515 516 516 515 
Canada 514 510 509 513 509 514 507 510 
Belgium 513 513 512 509 510 509 512 510 
Poland 513 508 513 510 513 510 513 513 
Germany 509 509 514 509 508 509 512 508 
Austria 503 503 502 501 502 500 501 501 
Australia 499 500 497 500 500 498 501 500 
Czech Republic 497 495 495 495 494 495 494 494 
Ireland 497 501 491 495 495 495 495 496 
New Zealand 497 497 497 497 497 497 497 497 
Slovenia 496 492 499 495 496 496 493 496 
Denmark 495 500 500 495 498 495 496 496 
France 495 492 496 494 494 492 491 493 
Iceland 491 490 489 491 489 491 490 490 
United Kingdom 490 490 490 491 490 491 490 490 
Norway 489 490 492 493 492 487 489 488 
Luxemburg 488 487 487 487 487 487 486 487 
Portugal 487 484 483 482 486 482 483 485 
Spain 486 483 484 484 482 483 483 482 
Italy 485 484 483 484 482 484 483 482 
Sweden 480 477 478 483 478 481 473 477 
Slovak Republic 479 475 480 482 480 475 479 477 
USA 479 472 472 474 474 474 475 475 
Hungary 475 468 469 468 469 468 468 469 
Israel 470 468 463 464 465 467 464 468 
Greece 453 451 450 451 450 451 451 450 
Turkey 444 445 444 443 444 445 443 444 
Chile 426 399 418 403 413 408 410 415 
Mexico 419 416 416 416 416 416 416 416 
OECD average 492 490 491 488 490 488 488 488 
OECD median 495 492 494 494 494 492 491 493 
Correlation with M0 1.00 0.99 0.99 0.99 1.00 0.99 0.99 1.00 
Correlation with M7 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 

Notes: Figures illustrate how average PISA mathematics scores vary depending upon the specification 
of the conditioning models. Green shading indicates higher scores relative to other countries and red 
cells lower scores. The average mathematics score for non-OECD countries can be found in Table D.2.  
M0 = no conditioning; M1-M6 correspond to conditioning with different subsets of conditioning 
variables (1: school direct regressors, 2: individual direct regressors, 3: indirect regressor, 4: all direct 
regressors, 5: school direct and indirect regressors, 6: individual direct and indirect regressors); M7 = 
full conditioning. South Korea is missing scores due to computational difficulties. 



Table D.2. Variation in estimated average PISA mathematics scores by conditioning model 
specification. Non-OECD countries  

Country M0 M1 M2 M3 M4 M5 M6 M7 
ALB 402 400 399 400 399 400 399 399 
ARE 434 413 415 417 415 415 419 420 
ARG 394 389 390 390 388 389 389 388 
BGR 439 437 436 437 436 437 436 436 
BRA 391 390 389 390 390 391 390 390 
COL 387 - 376 372 - 367 372 - 
CRI 408 408 407 406 408 407 407 407 
HKG 558 563 565 564 563 562 558 555 
HRV 467 467 466 466 467 467 466 466 
IDN 376 373 372 373 372 373 372 372 
JOR 385 384 383 384 384 384 384 384 
KAZ 430 430 427 429 428 430 427 428 
LIE 530 529 530 531 529 - 529 - 
LTU 475 474 473 474 473 474 473 473 
LVA 488 487 486 487 486 487 486 486 
MAC 536 540 540 539 539 539 539 539 
MNE 409 407 406 407 407 408 406 407 
MYS 420 419 418 418 418 419 418 418 
PER 377 375 374 374 374 375 374 374 
QAT 382 380 378 380 378 380 378 378 
QCN 606 604 618 619 617 613 619 617 
ROU 441 440 439 440 439 440 439 439 
RUS 482 477 479 476 478 478 481 479 
SGP 567 576 569 576 576 575 577 575 
SRB 447 447 446 - 446 - - - 
TAP 554 564 564 560 563 560 563 562 
THA 428 424 424 425 423 425 424 424 
TUN 394 392 390 392 390 392 390 390 
URY 418 415 414 415 414 415 414 414 
VNM 506 506 506 506 506 507 506 506 

Notes: Figures illustrate how average PISA mathematic scores vary depending upon the specification 
of the conditioning models. M0 = no conditioning; M1-M6 correspond to conditioning with different 
subsets of conditioning variables (1: school direct regressors, 2: individual direct regressors, 3: indirect 
regressor, 4: all direct regressors, 5: school direct and indirect regressors, 6: individual direct and 
indirect regressors); M7 = full conditioning. Columbia, Liechtenstein and Serbia are missing the scores 
due to computational difficulties. 

Inequality in PISA scores 

We are not only interested in the country average scores, but also in inequality measures. The difference 

between the 90th and 10th percentile is an inequality measure for spread and displayed in Table D.3. The 

table vertically depicts the percentile differences according to the different specification. The colours 

denote lower (higher) inequality in green (red) in relation to the other countries per specification.  



While the average mathematics scores are not sensitive to the specification, the percentile gaps are. This 

becomes obvious through the changes in colours between the columns. The greatest difference exists 

between no conditioning and conditioning (M1-M7), which is also reflected through rather low 

correlations roughly between 0.7 and 0.8. Furthermore, the average OECD percentile difference 

experiences a sharp rise from 214 to a somewhere between 248 and 253 as soon as any form of 

conditioning is applied.  

Even though the major differences are between no conditioning and any form of conditioning, there is 

also relative changes between the different specifications (see differing colour patterns). The correlation 

between the conditioning specifications ranges between 0.8 and 1 with especially high correlations (L >

0.9) when direct regressors are included. In line with the results from reading, the direct regressors seem 

to be an important part of the conditioning model.  

Table D.3. Estimates of inequality in PISA mathematics scores across countries by specification 
of the conditioning model (P90 – P10 gaps). OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 
Mexico 159 184 190 184 186 183 184 184 
Estonia 190 248 238 243 241 230 234 235 
Chile 193 196 216 198 229 230 210 224 
Denmark 195 221 258 252 233 250 246 246 
Finland 196 216 214 217 215 217 217 219 
Ireland 196 252 228 252 247 252 250 247 
Spain 202 224 232 225 234 226 232 233 
Greece 203 227 228 227 229 227 229 229 
Canada 204 243 242 241 229 234 234 226 
Norway 208 268 276 276 276 268 276 276 
Sweden 210 174 234 214 232 227 225 232 
Slovenia 211 274 274 267 239 271 238 250 
Iceland 214 237 240 235 240 236 239 238 
USA 214 263 263 268 267 269 269 269 
Austria 217 272 281 272 271 267 276 267 
Italy 217 241 246 241 247 242 246 246 
Poland 217 238 236 274 239 272 239 240 
United Kingdom 218 240 244 241 243 241 243 243 
Japan 218 233 239 229 238 236 237 238 
Switzerland 220 245 244 244 246 246 244 247 
Netherlands 220 240 242 241 242 242 242 242 
Turkey 220 240 236 243 239 241 242 240 
Portugal 221 247 279 283 258 279 282 259 
Hungary 222 277 282 276 277 275 279 274 
Luxemburg 224 245 248 245 248 245 245 244 
France 226 282 284 291 274 278 277 263 
Australia 227 279 269 280 247 256 281 250 
Czech Republic 228 246 259 246 256 246 258 255 
Germany 229 292 294 291 267 286 296 264 
New Zealand 233 254 258 255 257 256 258 258 



Belgium 241 306 293 304 273 299 296 276 
Slovak Republic 242 271 311 283 298 280 309 292 
Israel 246 297 284 306 289 295 285 269 
OECD average 215 248 253 253 249 252 252 248 
OECD median 217 245 246 246 246 246 245 246 
Correlation with M0 1.00 0.70 0.77 0.74 0.80 0.77 0.80 0.79 
Correlation with M7 0.79 0.81 0.93 0.86 0.97 0.90 0.94 1.00 

Notes: Figures illustrate how the difference between the 90th and 10th percentile of PISA mathematics 
scores changes depending upon the specification of the conditioning model. The mathematics percentile 
differences for non-OECD countries can be found in Table D.4. Green shading indicates less inequality 
in reading scores relative to other countries and red cells greater inequality. M0 = no conditioning; M1-
M6 correspond to conditioning with different subsets of conditioning variables (1: school direct 
regressors, 2: individual direct regressors, 3: indirect regressor, 4: all direct regressors, 5: school direct 
and indirect regressors, 6: individual direct and indirect regressors); M7 = full conditioning. 

Table D.4. Estimates of inequality in PISA mathematics scores across countries by specification 
of the conditioning model (P90 – P10 gaps). Non-OECD countries. 

Country M0 M1 M2 M3 M4 M5 M6 M7 
ALB 183 211 211 211 211 211 210 211 
ARE 209 254 244 258 247 259 256 255 
ARG 165 189 189 189 190 190 190 190 
BGR 222 243 242 244 242 243 243 241 
BRA 176 197 199 198 195 196 197 194 
CRI 145 172 170 171 170 172 171 172 
HKG 218 285 282 284 285 286 246 247 
HRV 207 228 221 230 224 231 229 230 
IDN 152 179 180 179 178 180 180 178 
JOR 169 193 194 195 192 193 194 192 
KAZ 156 180 181 182 180 180 182 180 
LTU 210 233 233 233 233 233 233 232 
LVA 188 212 215 213 213 212 215 214 
MAC 217 258 263 267 264 266 270 268 
MNE 186 209 210 208 209 210 207 209 
MYS 186 207 210 208 209 208 209 209 
PER 181 208 211 209 209 208 210 209 
QAT 229 251 259 250 257 250 255 254 
QCN 239 309 316 310 310 305 316 310 
ROU 188 210 209 211 208 211 209 209 
RUS 202 218 226 221 217 225 216 221 
SGP 247 316 271 318 318 320 320 319 
TAP 275 347 356 349 352 350 360 357 
THA 194 208 216 210 209 208 211 207 
TUN 174 197 202 199 196 196 200 196 
URY 199 223 224 223 223 223 223 222 
VNM 196 222 222 220 223 222 221 221 

Notes: Figures illustrate how the difference between the 90th and 10th percentile of PISA mathematic scores 
changes depending upon the specification of the conditioning model. M0 = no conditioning; M1-M6 correspond 
to conditioning with different subsets of conditioning variables (1: school direct regressors, 2: individual direct 
regressors, 3: indirect regressor, 4: all direct regressors, 5: school direct and indirect regressors, 6: individual direct 
and indirect regressors); M7 = full conditioning. 



The association between PISA scores and background characteristics 

One of the key motivations for using a conditioning model is to counteract attenuation in group 

estimates. In this paper, we examine if conditioning has an influence on the gaps in gender and migrant 

status. Gender is a direct regressor while migrant status is processed into indirect regressors (by using 

principle component analysis). 

Figure D.2 highlights how the country gender gaps (regression of mathematics performance upon an 

indicator of whether the student is female) are influenced by the specification of the conditioning model. 

Almost all countries experience a negative shift as soon as conditioning is used. Without conditioning 

no gender differences can found (0 points on average), while boys perform 5 to 6 points better than girls 

when conditioning with the individual direct regressors included (M2, M4, M6 and M7) is used. It is 

interesting that nearly all countries experience a negative shift, even when the gender gap from M0 is 

positive. This means that, despite conditioning attenuation, is still present in some cases, e.g. Finland 

has a gender difference of 9 points without conditioning, but only a gender gap of 2 points with full 

conditioning. Overall, the diamonds (M2) and triangles (M7) mostly sit on top of each other and are 

distinct from the circles (M0) meaning that the gender gap in most countries is not sensitive to exact 

specification of the model as long as direct regressors are included.  

 
Figure D.2. Country mathematics gender gap without conditioning (M0), just with individual 

direct regressor including gender (M2) and with full conditioning (M7) 



The achievement difference between migrant and native students in mathematics can be seen in Figure 

D.3. Overall, the three symbol – circle (M0), diamond (M3) and triangle (M7) – sit roughly on top of 

each other signalling that there are relatively small changes in the migrant-native gap between the 

specifications. The average migrant-native gap drops from -20 points (M0) to -24 (M3) and -24 points 

(M7), but the gaps in the countries itself cover a rather big range from -130 points (M7 in Shanghai) to 

+89 points (M7 in Qatar). One could assume that the migrant-native gap in the mathematics is also not 

sensitive to the specification of the conditioning model. 

 
Figure D.3. Country mathematics gap between migrant and native students without 

conditioning (M0), with indirect regressors (migration status was pre-processed) in conditioning 
(M3) and with full conditioning (M7)  



Appendix E. Science: Domain specific analyses 

Average scores 

Figure E.1 depicts the country science average scores without conditioning (triangle) and with full 

conditioning (circle) as well as its difference (line in between). While the conditioning model has more 

impact on the average scores in science than in mathematics, differences are fairly minor. On average, 

the scores rise by two points when full conditioning is applied, but there is no common direction. At 

the extremes, Russia experiences an increase of 12 points, while Tunisia experiences a decrease of -11 

points. Yet the ranking of countries remains roughly the same.  

 
Figure E.1. Country average science scores with and without conditioning 

This is stressed by Table E.1, which shows a rather consistent colour scheme and only minor variation 

in relative scores of the OECD countries. The table should be read vertically inside the conditioning 

model specification with green (red) scores belonging to higher (lower) relative country average scores. 

The correlations between all specifications (including no conditioning) is 0.97 or higher. While there is 

some change, the scores stay reasonably similar across all specifications. The OECD average rises by 

2 points from no conditioning (502 points) to full conditioning (504 points). 

 

 



Table E.1. Variation in estimated average PISA science scores by conditioning model 
specification. OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 
Japan 547 548 546 550 560 549 553 558 
Finland 541 545 542 544 540 545 546 547 
Estonia 538 538 543 533 541 534 546 541 
South Korea 535 533 545  -   546  -   -   -  
Canada 525 527 530 517 534 523 533 534 
Germany 523 522 525 521 531 522 523 530 
Poland 522 531 535 526 531 525 531 532 
Australia 521 524 523 522 526 527 520 525 
Ireland 520 521 528 520 524 520 524 523 
Netherlands 520 520 513 520 524 520 519 525 
New Zealand 516 516 515 516 516 516 518 518 
United Kingdom 513 515 508 514 512 515 514 516 
Switzerland 511 515 512 513 510 514 510 512 
Czech Republic 510 507 501 509 509 507 509 508 
Slovenia 509 509 490 508 520 506 519 507 
Belgium 508 507 507 509 514 510 514 513 
Austria 507 509 501 507 511 506 507 507 
France 504 502 505 510 503 503 511 507 
Norway 500 499 499 500 498 500 498 497 
USA 499 505 503 499 502 497 501 501 
Denmark 498 496 488 488 497 495 497 498 
Spain 498 498 506 497 505 497 504 502 
Hungary 497 491 495 493 499 491 498 500 
Italy 496 494 498 495 498 494 496 497 
Luxemburg 492 492 492 492 492 492 492 492 
Portugal 492 493 497 485 499 485 492 497 
Sweden 491 509 503 496 501 495 503 499 
Iceland 481 480 479 480 479 480 479 480 
Israel 478 470 485 472 489 472 488 480 
Slovak Republic 473 476 476 466 476 473 473 475 
Greece 471 470 474 471 473 470 473 473 
Turkey 463 462 462 463 460 462 461 467 
Chile 455 449 458 452 453 447 449 454 
Mexico 428 426 422 425 424 426 424 425 
OECD average 502 503 503 500 506 501 504 504 
OECD median 506 507 503 507 507 503 507 507 
Correlation with M0 1.00 0.99 0.97 0.99 0.99 0.99 0.99 0.99 
Correlation with M7 0.99 0.99 0.98 0.99 0.99 0.99 0.99 1.00 

Notes: Figures illustrate how average PISA science scores vary depending upon the specification of the 
conditioning models. The average science score for non-OECD countries can be found in Table E.2. 
Green shading indicates higher scores relative to other countries and red cells lower scores. M0 = no 
conditioning; M1-M6 correspond to conditioning with different subsets of conditioning variables (1: 
school direct regressors, 2: individual direct regressors, 3: indirect regressor, 4: all direct regressors, 5: 
school direct and indirect regressors, 6: individual direct and indirect regressors); M7 = full 
conditioning. South Korea is missing scores due to computational difficulties. 



 

Table E.2. Variation in estimated average PISA science scores by conditioning model 
specification. Non-OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 
ALB 413 412 417 411 417 412 417 417 
ARE 454 458 458 457 458 457 455 455 
ARG 416 414 415 412 408 413 420 418 
BGR 452 450 454 450 447 450 454 451 
BRA 413 414 404 412 410 413 406 411 
COL 419 - 411 419 - 414 409 - 
CRI 440 439 434 439 436 438 435 438 
HKG 554 556 557 556 557 555 556 561 
HRV 489 488 497 489 493 488 489 490 
IDN 387 385 377 384 385 384 377 383 
JOR 414 414 414 412 410 413 410 413 
KAZ 431 428 424 429 419 428 434 425 
LIE 526 528 523 534 536 - 531 - 
LTU 495 495 501 495 502 495 497 502 
LVA 500 500 499 500 499 500 499 500 
MAC 521 520 522 520 520 519 520 519 
MNE 413 412 411 411 417 411 418 415 
MYS 422 420 414 419 418 420 415 417 
PER 394 391 385 391 389 390 385 387 
QAT 393 391 403 391 400 391 400 402 
QCN 576 579 580 574 578 571 580 577 
ROU 441 440 437 440 443 439 438 442 
RUS 488 499 498 505 503 498 497 500 
SGP 548 555 534 552 552 556 551 553 
SRB 449 448 450 - 448 - - - 
TAP 522 527 527 518 525 521 525 526 
THA 448 446 445 445 444 445 444 444 
TUN 412 410 409 410 400 409 406 401 
URY 434 432 438 431 443 431 437 430 
VNM 529 529 528 529 528 528 530 529 

Notes: Figures illustrate how average PISA science scores vary depending upon the specification of the 
conditioning models. M0 = no conditioning; M1-M6 correspond to conditioning with different subsets 
of conditioning variables (1: school direct regressors, 2: individual direct regressors, 3: indirect 
regressor, 4: all direct regressors, 5: school direct and indirect regressors, 6: individual direct and 
indirect regressors); M7 = full conditioning. Columbia, Liechtenstein and Serbia are missing the scores 
due to computational difficulties. 

Inequality in PISA scores 

In contrast to the country average scores, the percentile gap (P90-P10) experiences substantial changes 

depending on the specification of the conditioning model. This becomes clear when assessing table E.3, 

which again depicts relative scores with green (red) scores relating to lower (higher) inequality. The 

mixed colouring and big changes between the columns make it apparent that the scores and the countries 



relative positions change substantially depending on the used specification. Countries, such as the 

Slovak Republic, which was in the bottom category (high inequality) for some specifications (M0, M1 

and M5) end up in the top category for others (M2, M4 and M6).  

Table E.3. Estimates of inequality in PISA science scores across countries by specification of the 
conditioning model (P90 – P10 gaps). OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 
Mexico 140 164 157 163 160 165 162 163 
Estonia 181 104 96 126 110 124 138 133 
Chile 184 146 160 146 174 168 184 176 
Turkey 185 208 205 206 207 208 205 210 
Spain 188 211 203 212 204 213 207 208 
Greece 196 224 215 225 221 225 224 228 
Poland 197 179 209 176 218 180 217 214 
Canada 201 151 137 147 171 165 173 178 
Switzerland 205 229 214 229 219 230 218 220 
Czech Republic 206 225 217 224 215 228 216 218 
Hungary 206 189 200 191 207 191 206 209 
Ireland 207 147 176 164 187 169 186 192 
Portugal 207 196 216 193 209 204 189 212 
Italy 209 235 223 236 225 237 226 230 
Denmark 210 125 148 162 139 173 167 177 
Austria 212 166 185 194 196 206 191 205 
Slovenia 212 202 156 177 209 205 199 222 
Finland 214 234 235 231 233 230 228 228 
USA 214 183 186 170 185 183 181 186 
Japan 215 229 228 228 260 231 254 260 
Sweden 218 306 248 237 239 233 198 217 
France 219 196 180 172 221 209 218 231 
Germany 220 175 145 175 213 206 162 224 
Norway 220 163 169 170 170 188 179 185 
Iceland 223 248 223 252 226 252 226 229 
Netherlands 223 245 226 243 233 245 230 236 
Belgium 226 181 256 193 206 201 262 227 
United Kingdom 228 253 235 252 240 255 242 248 
Australia 232 204 211 206 231 226 216 238 
Slovak Republic 235 222 171 204 196 239 179 216 
Luxemburg 236 261 253 264 253 265 263 265 
New Zealand 238 263 250 263 251 264 254 257 
Israel 239 235 280 229 260 236 262 261 
OECD average 210 203 200 202 209 211 208 215 
OECD median 212 204 209 204 213 209 207 218 
Correlation with M0 1.00 0.49 0.51 0.52 0.59 0.65 0.54 0.70 
Correlation with M7 0.70 0.79 0.82 0.83 0.96 0.89 0.88 1.00 

Notes: Figures illustrate how the difference between the 90th and 10th percentile of PISA science scores 
changes depending upon the specification of the conditioning model. The science percentile gaps for 
non-OECD countries can be found in Table E.4. Green shading indicates less inequality in reading 



scores relative to other countries and red cells greater inequality. M0 = no conditioning; M1-M6 
correspond to conditioning with different subsets of conditioning variables (1: school direct regressors, 
2: individual direct regressors, 3: indirect regressor, 4: all direct regressors, 5: school direct and indirect 
regressors, 6: individual direct and indirect regressors); M7 = full conditioning. 

 

Table E.4. Estimates of inequality in PISA science scores across countries by specification of the 
conditioning model (P90 – P10 gaps). Non-OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 
ALB 188 220 225 219 225 220 223 223 
ARE 210 177 175 198 177 188 204 206 
ARG 177 206 207 206 210 207 205 209 
BGR 237 262 261 260 262 261 259 260 
BRA 163 187 190 187 188 188 189 189 
CRI 139 164 165 164 166 166 165 167 
HKG 180 108 94 99 113 118 176 175 
HRV 197 219 213 220 213 221 217 220 
IDN 140 166 167 165 166 168 166 166 
JOR 177 201 202 205 201 204 203 203 
KAZ 156 188 188 187 190 188 184 186 
LTU 196 220 216 221 208 221 215 223 
LVA 176 199 187 196 190 198 191 193 
MAC 177 105 101 113 110 121 112 121 
MNE 189 213 222 214 219 214 219 219 
MYS 175 200 199 202 202 203 203 203 
PER 153 179 176 179 179 181 179 181 
QAT 239 264 265 265 264 266 257 266 
QCN 188 152 113 140 145 174 118 148 
ROU 177 202 202 203 200 203 203 201 
RUS 189 180 172 174 192 188 167 200 
SGP 239 171 236 171 171 181 170 177 
TAP 196 147 134 160 139 160 136 140 
THA 171 190 191 193 190 191 193 192 
TUN 169 196 207 196 205 196 201 204 
URY 199 225 234 229 230 231 229 235 
VNM 171 194 184 194 187 195 190 193 

Notes: Figures illustrate how the difference between the 90th and 10th percentile of PISA science scores 
changes depending upon the specification of the conditioning model. M0 = no conditioning; M1-M6 
correspond to conditioning with different subsets of conditioning variables (1: school direct regressors, 
2: individual direct regressors, 3: indirect regressor, 4: all direct regressors, 5: school direct and indirect 
regressors, 6: individual direct and indirect regressors); M7 = full conditioning. 

 

 

 



The association between PISA scores and background characteristics 

One of the key motivations for using a conditioning model is to counteract attenuation in group 

estimates. In this paper, we examine if conditioning has an influence on the gaps in gender and migrant 

status. Gender is a direct regressor while migrant status is processed into indirect regressors (by using 

principle component analysis). 

Figure E.2 shows that the conditioning model specifications have rather little influence on the gender 

gap in science, especially in comparison to the gender gaps in mathematics and reading. In multiple 

countries the three symbols sit on top of each other or close together which means that the gender gap 

is robust against the specification. For the remaining countries, (substantial) change can be seen 

depending on the specification, but there is no common direction or magnitude of the science gender 

gap. Overall, the average gender gap rises only one point between no conditioning (3 points) and full 

conditioning (4 points). Yet, because not all countries are sensitive to the specification of the 

conditioning model, distinct changes in rank can occur.  

 
Figure E.2. Country science gender gap without conditioning (M0), just with individual direct 

regressor (incl. gender) in conditioning (M2) and with full conditioning (M7) 

Figure E.3 displays the gaps in science achievement for another grouping variable – migrant status 

(native vs migrant students). Again, the influence of the conditioning model specification is rather small 

with even more countries, which have the three symbols sitting on top of each other or close together. 



In the countries, which exhibit a wider spread of symbols, it is usually the diamond (M3; just indirect 

regressors) which is further apart with the circle (M0) and the triangle (M7) staying closer together.  

 
Figure E.3. Country science gap between migrant and native students without conditioning 

(M0), with indirect regressors (migration status was pre-processed) in conditioning (M3) and 
with full conditioning (M7) 

 

  



Appendix F. Reading: Non-OECD specific tables 

Table F.1. Variation in estimated average PISA reading scores by conditioning model 
specification. Non-OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 
ALB 407 404 419 405 414 404 417 397 
ARE 444 476 469 469 475 474 467 463 
ARG 405 401 419 401 414 401 403 407 
BGR 440 437 441 437 428 437 435 448 
BRA 414 415 420 413 418 414 421 419 
COL 421 - 447 452 - 448 455 - 
CRI 448 446 453 446 447 445 449 447 
HKG 542 535 525 531 524 537 506 528 
HRV 483 483 445 483 449 482 459 470 
IDN 399 397 407 397 395 396 406 393 
JOR 404 401 414 401 411 401 414 407 
KAZ 395 392 401 392 395 392 396 388 
LIE 512 511 479 502 481 - 493 - 
LTU 475 475 446 474 441 474 452 471 
LVA 489 487 459 487 462 486 465 466 
MAC 509 493 488 492 488 493 488 490 
MNE 425 424 435 422 434 423 428 428 
MYS 403 400 410 399 406 399 408 402 
PER 401 398 397 397 398 397 403 396 
QAT 398 395 378 395 375 395 375 376 
QCN 565 588 561 581 549 575 557 548 
ROU 435 434 443 434 442 434 442 436 
RUS 477 476 459 473 452 476 460 450 
SGP 537 531 499 529 518 534 514 516 
SRB 450 449 438 - 460 - - - 
TAP 520 512 507 527 506 522 504 504 
THA 443 440 434 441 438 440 437 440 
TUN 414 412 428 412 427 412 427 427 
URY 426 424 428 423 426 423 425 426 
VNM 505 505 488 505 487 505 490 497 

Notes: Figures illustrate how average PISA reading scores vary depending upon the specification of the 
conditioning models. M0 = no conditioning; M1-M6 correspond to conditioning with different subsets 
of conditioning variables (1: school direct regressors, 2: individual direct regressors, 3: indirect 
regressor, 4: all direct regressors, 5: school direct and indirect regressors, 6: individual direct and 
indirect regressors); M7 = full conditioning. Columbia, Liechtenstein and Serbia are missing the scores 
due to computational difficulties. 

 

 

 

 



Table F.2. Estimates of inequality in PISA reading scores across countries by specification of the 
conditioning model (P90 – P10 gaps). Non-OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 
ALB 216 256 253 254 256 256 254 277 
ARE 215 175 195 189 179 180 198 204 
ARG 201 232 240 237 238 237 246 236 
BGR 272 308 314 310 324 310 316 314 
BRA 188 219 218 218 218 219 219 219 
CRI 153 183 182 183 182 182 180 184 
HKG 192 203 202 205 207 205 201 231 
HRV 194 220 229 219 230 219 226 226 
IDN 156 190 186 189 190 192 189 191 
JOR 198 231 227 230 228 230 230 229 
KAZ 158 187 187 187 189 190 189 199 
LTU 198 223 227 226 235 225 232 229 
LVA 184 211 218 211 219 211 218 217 
MAC 182 212 212 215 214 214 216 215 
MNE 204 236 242 234 241 235 238 239 
MYS 184 213 213 215 214 215 217 218 
PER 197 229 228 233 229 231 233 232 
QAT 250 284 276 281 278 284 283 279 
QCN 184 176 165 104 176 162 168 175 
ROU 203 233 233 233 232 235 239 245 
RUS 204 272 271 282 269 273 269 261 
SGP 230 219 213 212 218 239 211 226 
TAP 214 182 181 147 178 179 184 184 
THA 174 196 205 202 200 200 205 201 
TUN 192 228 230 228 232 229 231 234 
URY 207 241 250 239 250 241 248 248 
VNM 162 182 196 183 188 183 194 188 

Notes: Figures illustrate how the difference between the 90th and 10th percentile of PISA reading scores 
changes depending upon the specification of the conditioning model. M0 = no conditioning; M1-M6 
correspond to conditioning with different subsets of conditioning variables (1: school direct regressors, 
2: individual direct regressors, 3: indirect regressor, 4: all direct regressors, 5: school direct and indirect 
regressors, 6: individual direct and indirect regressors); M7 = full conditioning. 

  



Appendix G. How does the migrant-native gap in reading scores change when migrant 
status is used as a direct (rather than indirect) regressor? 

Figure G.1 highlights the differences in the migrant-native gap in reading scores between three separate 

models: 

(i) No conditioning (M0) 

(ii) Full conditioning with migrant status as an indirect regressor (M7) 

(iii) Full conditioning with migrant status as a direct regressor (M7a) 

In most countries the estimated migrant-native gap does not change whether migrant status is used as a 

direct or indirect regressor (triangle and square on top of each other). Again, however, there are some 

important individual exceptions. In some countries, such as Bulgaria (M7 = -124; M7a = -96) and Peru 

(M7 = -80; M7a = -97), there is an appreciable change in at least the magnitude of the immigrant-native 

gap. These are, however, the exceptions rather than the rule. Overall, it seems that the decision of 

whether to include immigrant status as a direct or indirect regressor has a trivial impact upon the 

substantive results.  

 
Notes: Altered model 7a (IMMIG included in direct regressors) could not be computed for Korea due 
to computational difficulties, because of the very small subset of non-native students. 

Figure G.1. Country reading gap between migrant and native students without conditioning 
(model 0), with original model 7 and altered model 7a (IMMIG included as direct regressor). 

 



Appendix H. Number of principal components dependent on the student questionnaire 
booklets 

In PISA 2012, the rotated design is not only used for the cognitive items but also for the student 

background questionnaire. Overall, three different versions of the student background questionnaire 

(booklet A, B and C) were administered (questionnaire booklets can be downloaded from 

http://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm). All three included the 

common parts about the student (section A) and the student’s family and home (section B). Furthermore, 

all three booklets included questions about learning mathematics (section C), but the booklets differed 

in extent. Booklet A administered all 21 items about learning mathematics, while booklet B (9 items) 

and booklet C (14 items) contained different subsets. Booklet A also asked questions about the student’s 

problem-solving experience (section F). Booklet B additionally contained items about the student’s 

mathematics experience (section D), the school (section E) and also problem-solving experience 

(section F). Booklet C also covered the student’s mathematics experience (section D) and school 

(section E). Roughly a third of each country takes each booklet. 

Due to the rotated design, the student background questionnaire experiences a substantial amount of 

missing data while being the foundation for the indirect regressors in the conditioning model. We are 

therefore interested in how the number of indirect regressors changes if we look at the separate booklet 

questionnaires only and not complete rotated design (see Table H.1). Overall, the number of principal 

components vary between countries and booklets. The maximal amount of principal components was 

157 in Italy for booklet B and the minimal was 51 in Liechtenstein for Booklet A. The number of 

principal components varies between the sample with all booklets and the different subsamples for each 

booklet, but the numbers lay in a plausible range with no surprising outliers anywhere.   

Table H.1. Number of principal components used for conditioning, when using the complete 
background questionnaire as base or the student questionnaire booklet separately (reduced 

sample size) 

Country All Booklet A Booklet B Booklet C 
AUS 103 91 105 102 
AUT 115 104 122 116 
BEL 145 137 148 144 
CAN 102 92 103 100 
CHE 109 100 110 103 
CHL 130 117 132 131 
CZE 95 85 100 91 
DEU 110 102 112 124 
DNK 120 111 122 120 
ESP 106 94 108 101 
EST 94 82 95 93 
FIN 113 106 118 114 
FRA 82 73 86 85 
GBR 84 76 85 81 



GRC 102 93 110 103 
HUN 133 124 139 137 
IRL 115 103 118 113 
ISL 78 80 87 89 
ISR 85 73 87 91 
ITA 153 146 157 149 
JPN 80 69 82 85 
KOR 142 131 146 144 
LUX 116 109 117 114 
MEX 136 130 140 133 
NLD 90 83 93 92 
NOR 90 82 90 92 
NZL 97 94 101 100 
POL 91 84 100 90 
PRT 150 142 152 155 
SVK 120 113 129 123 
SVN 116 108 119 118 
SWE 94 88 97 97 
TUR 100 92 104 100 
USA 77 69 82 78 
Non-OECD countries: 
ALB 69 60 78 81 
ARE 86 78 90 87 
ARG 95 88 100 99 
BGR 84 76 85 85 
BRA 89 78 90 89 
COL 89 76 91 94 
CRI 102 94 106 102 
HKG 135 122 136 143 
HRV 137 129 139 134 
IDN 90 84 92 88 
JOR 102 97 108 104 
KAZ 84 77 88 80 
LIE 55 51 53 82 
LTU 81 73 86 79 
LVA 121 106 120 119 
MAC 139 132 146 142 
MNE 83 76 87 85 
MYS 82 72 84 82 
PER 88 79 91 92 
QAT 83 72 85 88 
QCN 95 84 98 97 
QRS 97 83 93 99 
ROU 86 78 91 84 
RUS 102 90 104 99 
SGP 110 100 116 112 
SRB 118 110 118 120 
TAP 96 88 102 95 
THA 86 77 88 80 



TUN 83 76 87 88 
URY 109 99 110 111 
VNM 81 76 89 83 
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